Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2007, Volume 52, Issue 4, Pages 768–792
DOI: https://doi.org/10.4213/tvp1533
(Mi tvp1533)
 

This article is cited in 11 scientific papers (total in 11 papers)

Time-Varying Fractionally Integrated Processes with Nonstationary Long Memory

A. Philippea, D. Surgailisb, M.-C. Vianoa

a CNRS — Laboratoire de Mathématiques Jean Leray, Département de Mathématiques, Universite de Nantes
b Institute of Mathematics and Informatics
References:
Abstract: Two classes $A(d), B(d)$ of time-varying linear filters are introduced, built from a given sequence $d = (d_t, t \in Z) $ of real numbers, and such that, for constant dtd, $A(d)=B(d) = (I -L)^{-d}$ is the usual fractional differencing operator. The invertibility relations $B (-d)\,A(d) = A(-d) B(d) = I$ are established. We study the asymptotic behavior of the partial sums of the filtered white noise processes $Y_t = A(d)\,G \varepsilon_t$ and $X_t = B(d)\,G \varepsilon_t$, when $d $ admits limits limt±dt=d±(0,12), G being a short memory filter. We show that the limit of partial sums is a self-similar Gaussian process, depending on d± and on the sum of the coefficients of G only. The limiting process has either asymptotically stationary increments, or asymptotically vanishing increments and smooth sample paths.
Keywords: nonstationary long memory, time-varying fractional integration, partial sums, self-similar processes, asymptotically stationary increments.
Received: 05.10.2005
English version:
Theory of Probability and its Applications, 2008, Volume 52, Issue 4, Pages 651–673
DOI: https://doi.org/10.1137/S0040585X97983304
Bibliographic databases:
Language: English
Citation: A. Philippe, D. Surgailis, M.-C. Viano, “Time-Varying Fractionally Integrated Processes with Nonstationary Long Memory”, Teor. Veroyatnost. i Primenen., 52:4 (2007), 768–792; Theory Probab. Appl., 52:4 (2008), 651–673
Citation in format AMSBIB
\Bibitem{PhiSurVia07}
\by A.~Philippe, D.~Surgailis, M.-C.~Viano
\paper Time-Varying Fractionally Integrated Processes with Nonstationary Long Memory
\jour Teor. Veroyatnost. i Primenen.
\yr 2007
\vol 52
\issue 4
\pages 768--792
\mathnet{http://mi.mathnet.ru/tvp1533}
\crossref{https://doi.org/10.4213/tvp1533}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2742875}
\zmath{https://zbmath.org/?q=an:1167.60326}
\transl
\jour Theory Probab. Appl.
\yr 2008
\vol 52
\issue 4
\pages 651--673
\crossref{https://doi.org/10.1137/S0040585X97983304}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262081600007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-56749179667}
Linking options:
  • https://www.mathnet.ru/eng/tvp1533
  • https://doi.org/10.4213/tvp1533
  • https://www.mathnet.ru/eng/tvp/v52/i4/p768
  • This publication is cited in the following 11 articles:
    1. Wei Wang, Michał Balcerek, Krzysztof Burnecki, Aleksei V. Chechkin, Skirmantas Janušonis, Jakub Ślȩzak, Thomas Vojta, Agnieszka Wyłomańska, Ralf Metzler, “Memory-multi-fractional Brownian motion with continuous correlations”, Phys. Rev. Research, 5:3 (2023)  crossref
    2. Boubaker H., Canarella G., Gupta R., Miller S.M., “Long-Memory Modeling and Forecasting: Evidence From the Us Historical Series of Inflation”, Stud. Nonlinear Dyn. Econom., 25:5 (2021), 289–310  crossref  mathscinet  isi
    3. Boubaker H., “A Generalized Arfima Model With Smooth Transition Fractional Integration Parameter”, J. Time Ser. Econom., 10:1 (2018), UNSP 20150001  crossref  mathscinet  isi  scopus
    4. Grublyte I. Surgailis D., “Projective Stochastic Equations and Nonlinear Long Memory”, Adv. Appl. Probab., 46:4 (2014), 1084–1105  crossref  mathscinet  zmath  isi  scopus
    5. Ieva Grublytė, Donatas Surgailis, “Projective Stochastic Equations and Nonlinear Long Memory”, Adv. Appl. Probab., 46:04 (2014), 1084  crossref
    6. Lavancier F. Leipus R. Philippe A. Surgailis D., “Detection of Nonconstant Long Memory Parameter”, Economet. Theory, 29:5 (2013), 1009–1056  crossref  mathscinet  zmath  isi  scopus
    7. Leipus R. Surgailis D., “Asymptotics of Partial Sums of Linear Processes with Changing Memory Parameter”, Lith. Math. J., 53:2 (2013), 196–219  crossref  mathscinet  zmath  isi  scopus
    8. Bardet J.-M., Surgailis D., “Measuring the roughness of random paths by increment ratios”, Bernoulli, 17:2 (2011), 749–780  crossref  mathscinet  zmath  isi  scopus
    9. Donatas Surgailis, Gilles Teyssière, Marijus Vaičiulis, “The increment ratio statistic”, Journal of Multivariate Analysis, 99:3 (2008), 510  crossref
    10. Serge Cohen, Renaud Marty, “Invariance principle, multifractional Gaussian processes and long-range dependence”, Ann. Inst. H. Poincaré Probab. Statist., 44:3 (2008)  crossref
    11. Kristina Bružaitė, Donatas Surgailis, Marijus Vaičiulis, “Time-Varying Fractionally Integrated Processes with Finite or Infinite Variance and Nonstationary Long Memory”, Acta Appl Math, 96:1-3 (2007), 99  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:349
    Full-text PDF :184
    References:68
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025