Abstract:
Two classes $A(d), B(d)$ of time-varying linear filters are introduced, built from a given sequence $d = (d_t, t \in Z) $ of real numbers, and such that, for constant dt≡d, $A(d)=B(d) = (I -L)^{-d}$ is the usual fractional differencing operator. The invertibility relations $B (-d)\,A(d) = A(-d) B(d) = I$ are established. We study the asymptotic behavior of the partial sums of the filtered white noise processes $Y_t = A(d)\,G \varepsilon_t$ and $X_t = B(d)\,G \varepsilon_t$, when $d $ admits limits limt→±∞dt=d±∈(0,12), G being a short memory filter. We show that the limit of partial sums is a self-similar Gaussian process, depending on d± and on the sum of the coefficients of G only. The limiting process has either asymptotically stationary increments, or asymptotically vanishing increments and smooth sample paths.
Citation:
A. Philippe, D. Surgailis, M.-C. Viano, “Time-Varying Fractionally Integrated Processes with Nonstationary Long Memory”, Teor. Veroyatnost. i Primenen., 52:4 (2007), 768–792; Theory Probab. Appl., 52:4 (2008), 651–673
This publication is cited in the following 11 articles:
Wei Wang, Michał Balcerek, Krzysztof Burnecki, Aleksei V. Chechkin, Skirmantas Janušonis, Jakub Ślȩzak, Thomas Vojta, Agnieszka Wyłomańska, Ralf Metzler, “Memory-multi-fractional Brownian motion with continuous correlations”, Phys. Rev. Research, 5:3 (2023)
Boubaker H., Canarella G., Gupta R., Miller S.M., “Long-Memory Modeling and Forecasting: Evidence From the Us Historical Series of Inflation”, Stud. Nonlinear Dyn. Econom., 25:5 (2021), 289–310
Boubaker H., “A Generalized Arfima Model With Smooth Transition Fractional Integration Parameter”, J. Time Ser. Econom., 10:1 (2018), UNSP 20150001
Grublyte I. Surgailis D., “Projective Stochastic Equations and Nonlinear Long Memory”, Adv. Appl. Probab., 46:4 (2014), 1084–1105
Ieva Grublytė, Donatas Surgailis, “Projective Stochastic Equations and Nonlinear Long Memory”, Adv. Appl. Probab., 46:04 (2014), 1084
Lavancier F. Leipus R. Philippe A. Surgailis D., “Detection of Nonconstant Long Memory Parameter”, Economet. Theory, 29:5 (2013), 1009–1056
Leipus R. Surgailis D., “Asymptotics of Partial Sums of Linear Processes with Changing Memory Parameter”, Lith. Math. J., 53:2 (2013), 196–219
Bardet J.-M., Surgailis D., “Measuring the roughness of random paths by increment ratios”, Bernoulli, 17:2 (2011), 749–780
Donatas Surgailis, Gilles Teyssière, Marijus Vaičiulis, “The increment ratio statistic”, Journal of Multivariate Analysis, 99:3 (2008), 510
Serge Cohen, Renaud Marty, “Invariance principle, multifractional Gaussian processes and long-range dependence”, Ann. Inst. H. Poincaré Probab. Statist., 44:3 (2008)
Kristina Bružaitė, Donatas Surgailis, Marijus Vaičiulis, “Time-Varying Fractionally Integrated Processes with Finite or Infinite Variance and Nonstationary Long Memory”, Acta Appl Math, 96:1-3 (2007), 99