Loading [MathJax]/jax/output/SVG/config.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1998, Volume 43, Issue 2, Pages 209–225
DOI: https://doi.org/10.4213/tvp1462
(Mi tvp1462)
 

This article is cited in 7 scientific papers (total in 7 papers)

Local asymptotic efficiency of a sequential probability ratio testfor $d$-guarantee discriminationof composite hypotheses

I. N. Volodin, A. A. Novikov

Kazan State University
Full-text PDF (919 kB) Citations (7)
Abstract: A sequential Wald test for discrimination of two simple hypotheses $\theta=\theta_1$ and $\theta=\theta_2$ with boundaries $A$ and $B$ is applied to distinguish composite hypotheses $\theta<\theta_0$ and $\theta>\theta_0$, the parameters $\theta_1, \theta_2, A$, and $B$ being chosen in such a way that $d$-posteriori probabilities of errors do not exceed the given restrictions $\beta_0$ and $\beta_1$. An asymptotic behavior of boundaries $A, B$ and the average observation time are studied when $\beta=\max\{\beta_0, \beta_1\}\to 0$. An asymptotic $(\beta\to 0)$ comparison is made of ${\mathbb{E}}_{\theta}\nu$ with the least given number of observations necessary for discrimination of composite hypotheses with the same restrictions $\beta_0, \beta_1$ on $d$-posteriori probabilities of errors. It is shown that the minimum (in a neighborhood of the point $\theta=\theta_0$) gain of the average observation time makes up 25%. Therefore, there are sequential tests within the bounds of a $d$-posteriori approach that give a gain in the size of observations for every value of a parameter tested.
Keywords: discrimination of composite hypotheses, asymptotic efficiency, Wiener process, Bayesian paradigm, $d$-posteriori approach, $d$-guarantee, strict restrictions ond-risks, regular statistical experiments, sequential tests, average size of observations, necessary size ofa sample.
Received: 26.08.1996
English version:
Theory of Probability and its Applications, 1999, Volume 43, Issue 2, Pages 269–281
DOI: https://doi.org/10.1137/S0040585X97976878
Bibliographic databases:
Language: Russian
Citation: I. N. Volodin, A. A. Novikov, “Local asymptotic efficiency of a sequential probability ratio testfor $d$-guarantee discriminationof composite hypotheses”, Teor. Veroyatnost. i Primenen., 43:2 (1998), 209–225; Theory Probab. Appl., 43:2 (1999), 269–281
Citation in format AMSBIB
\Bibitem{VolNov98}
\by I.~N.~Volodin, A.~A.~Novikov
\paper Local asymptotic efficiency of a~sequential probability ratio testfor $d$-guarantee discriminationof composite hypotheses
\jour Teor. Veroyatnost. i Primenen.
\yr 1998
\vol 43
\issue 2
\pages 209--225
\mathnet{http://mi.mathnet.ru/tvp1462}
\crossref{https://doi.org/10.4213/tvp1462}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1679000}
\zmath{https://zbmath.org/?q=an:0953.62078}
\transl
\jour Theory Probab. Appl.
\yr 1999
\vol 43
\issue 2
\pages 269--281
\crossref{https://doi.org/10.1137/S0040585X97976878}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000083189300007}
Linking options:
  • https://www.mathnet.ru/eng/tvp1462
  • https://doi.org/10.4213/tvp1462
  • https://www.mathnet.ru/eng/tvp/v43/i2/p209
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:423
    Full-text PDF :189
    First page:12
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025