Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2005, Volume 50, Issue 4, Pages 675–710
DOI: https://doi.org/10.4213/tvp125
(Mi tvp125)
 

This article is cited in 17 scientific papers (total in 17 papers)

On a two-temperature problem for Klein–Gordon equation

T. V. Dudnikovaa, A. I. Komechb

a Electrostal' Polytechnic Institute
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We consider the Klein–Gordon equation in Rn, n2, with constant or variable coefficients. The initial datum is a random function with a finite mean density of the energy and satisfies a Rosenblatt- or Ibragimov–Linnik-type mixing condition. We also assume that the random function is close to different space-homogeneous processes as xn±, with the distributions μ±. We study the distribution μt of the random solution at time tR. The main result is the convergence of μt to a Gaussian translation-invariant measure as t that means the central limit theorem for the Klein–Gordon equation. The proof is based on the Bernstein “room-corridor” method and oscillatory integral estimates. The application to the case of the Gibbs measures μ±=g± with two different temperatures T± is given. It is proved that limit mean energy current density formally is (0,,0,T+T) for the Gibbs measures, and it is finite and equals C(0,,0,T+T) with some positive constant C>0 for the smoothed solution. This corresponds to the second law of thermodynamics.
Keywords: Klein–Gordon equation, Cauchy problem, random initial data, mixing condition, Fourier transform, weak convergence of measures, Gaussian measures, covariance functions and matrices, characteristic functional.
Received: 21.10.2003
Revised: 09.05.2005
English version:
Theory of Probability and its Applications, 2006, Volume 50, Issue 4, Pages 582–611
DOI: https://doi.org/10.1137/S0040585X97981998
Bibliographic databases:
Language: Russian
Citation: T. V. Dudnikova, A. I. Komech, “On a two-temperature problem for Klein–Gordon equation”, Teor. Veroyatnost. i Primenen., 50:4 (2005), 675–710; Theory Probab. Appl., 50:4 (2006), 582–611
Citation in format AMSBIB
\Bibitem{DudKom05}
\by T.~V.~Dudnikova, A.~I.~Komech
\paper On a two-temperature problem for Klein--Gordon equation
\jour Teor. Veroyatnost. i Primenen.
\yr 2005
\vol 50
\issue 4
\pages 675--710
\mathnet{http://mi.mathnet.ru/tvp125}
\crossref{https://doi.org/10.4213/tvp125}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2331983}
\zmath{https://zbmath.org/?q=an:1119.82034}
\elib{https://elibrary.ru/item.asp?id=9157508}
\transl
\jour Theory Probab. Appl.
\yr 2006
\vol 50
\issue 4
\pages 582--611
\crossref{https://doi.org/10.1137/S0040585X97981998}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000243284300003}
\elib{https://elibrary.ru/item.asp?id=13505506}
Linking options:
  • https://www.mathnet.ru/eng/tvp125
  • https://doi.org/10.4213/tvp125
  • https://www.mathnet.ru/eng/tvp/v50/i4/p675
  • This publication is cited in the following 17 articles:
    1. T. V. Dudnikova, “Stabilization of the statistical solutions for large times for a harmonic lattice coupled to a Klein–Gordon field”, Theoret. and Math. Phys., 218:2 (2024), 241–263  mathnet  crossref  crossref  mathscinet  adsnasa
    2. T. V. Dudnikova, “On Mixing Conditions in Proving the Asymptotical Normality for Harmonic Crystals”, Lobachevskii J Math, 44:7 (2023), 2613  crossref
    3. T. V. Dudnikova, “Local Stationarity for the Klein—Gordon Equations”, J Math Sci, 269:2 (2023), 173  crossref
    4. T. V. Dudnikova, “On the stationary non-equilibrium measures for the “field–crystal” system”, Dokl. Math., 106:2 (2022), 332–335  mathnet  crossref  crossref  mathscinet  elib
    5. T. V. Dudnikova, “Convergence to stationary non-equilibrium states for Klein–Gordon equations”, Izv. Math., 85:5 (2021), 932–952  mathnet  crossref  crossref  zmath  adsnasa  isi  elib
    6. Dudnikova V T., “Convergence to Stationary States and Energy Current For Infinite Harmonic Crystals”, Russ. J. Math. Phys., 26:4 (2019), 428–453  crossref  mathscinet  isi
    7. T. V. Dudnikova, “O neravnovesnykh sostoyaniyakh kristallicheskoi reshetki”, Preprinty IPM im. M. V. Keldysha, 2018, 015, 26 pp.  mathnet  crossref  elib
    8. Dudnikova T.V., “On the Asymptotical Normality of Statistical Solutions For Wave Equations Coupled to a Particle”, Russ. J. Math. Phys., 24:2 (2017), 172–194  crossref  mathscinet  zmath  isi  scopus
    9. T. V. Dudnikova, “On the Asymptotic Normality of a Harmonic Crystal Coupled to a Wave Field”, Math. Notes, 99:6 (2016), 942–945  mathnet  crossref  crossref  mathscinet  isi  elib
    10. T. V. Dudnikova, “Caricature of hydrodynamics for lattice dynamics”, P-Adic Num Ultrametr Anal Appl, 4:4 (2012), 245  crossref
    11. T. V. Dudnikova, “Deriving hydrodynamic equations for lattice systems”, Theoret. and Math. Phys., 169:3 (2011), 1668–1682  mathnet  crossref  crossref  mathscinet  isi
    12. Dudnikova T.V., “Convergence to equilibrium distribution. The Klein–Gordon equation coupled to a particle”, Russ. J. Math. Phys., 17:1 (2010), 77–95  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    13. Dudnikova T.V., “Lattice dynamics in the half-space. Energy transport equation”, J. Math. Phys., 51:8 (2010), 083301, 25 pp.  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    14. Dudnikova T.V., “On the asymptotical normality of statistical solutions for harmonic crystals in half-space”, Russ. J. Math. Phys., 15:4 (2008), 460–472  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    15. T. V. Dudnikova, “Convergence to equilibrium of the wave equation in Rn with odd n3”, Russian Math. Surveys, 61:1 (2006), 168–170  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    16. Dudnikova T.V., “On ergodic properties for harmonic crystals”, Russ. J. Math. Phys., 13:2 (2006), 123–130  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    17. Dudnikova T.V., Komech A.I., “On the convergence to a statistical equilibrium in the crystal coupled to a scalar field”, Russ. J. Math. Phys., 12:3 (2005), 301–325  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:566
    Full-text PDF :209
    References:94
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025