Abstract:
We consider the Klein–Gordon equation in Rn, n≥2, with constant or variable coefficients. The initial datum is a random function with a finite mean density of the energy and satisfies a Rosenblatt- or Ibragimov–Linnik-type mixing condition. We also assume that the random function is close to different space-homogeneous processes as xn→±∞, with the distributions μ±. We study the distribution μt of the random solution at time t∈R. The main result is the convergence of μt to a Gaussian translation-invariant measure as t→∞ that means the central limit theorem for the Klein–Gordon equation. The proof is based on the Bernstein “room-corridor” method and oscillatory integral estimates. The application to the case of the Gibbs measures μ±=g± with two different temperatures T± is given. It is proved that limit mean energy current density formally is −∞⋅(0,…,0,T+−T−) for the Gibbs measures, and it is finite and equals −C(0,…,0,T+−T−) with some positive constant C>0 for the smoothed solution. This corresponds to the second law of thermodynamics.
Keywords:
Klein–Gordon equation, Cauchy problem, random initial data, mixing condition, Fourier transform, weak convergence of measures, Gaussian measures, covariance functions and matrices, characteristic functional.
Citation:
T. V. Dudnikova, A. I. Komech, “On a two-temperature problem for Klein–Gordon equation”, Teor. Veroyatnost. i Primenen., 50:4 (2005), 675–710; Theory Probab. Appl., 50:4 (2006), 582–611
\Bibitem{DudKom05}
\by T.~V.~Dudnikova, A.~I.~Komech
\paper On a two-temperature problem for Klein--Gordon equation
\jour Teor. Veroyatnost. i Primenen.
\yr 2005
\vol 50
\issue 4
\pages 675--710
\mathnet{http://mi.mathnet.ru/tvp125}
\crossref{https://doi.org/10.4213/tvp125}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2331983}
\zmath{https://zbmath.org/?q=an:1119.82034}
\elib{https://elibrary.ru/item.asp?id=9157508}
\transl
\jour Theory Probab. Appl.
\yr 2006
\vol 50
\issue 4
\pages 582--611
\crossref{https://doi.org/10.1137/S0040585X97981998}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000243284300003}
\elib{https://elibrary.ru/item.asp?id=13505506}
Linking options:
https://www.mathnet.ru/eng/tvp125
https://doi.org/10.4213/tvp125
https://www.mathnet.ru/eng/tvp/v50/i4/p675
This publication is cited in the following 17 articles:
T. V. Dudnikova, “Stabilization of the statistical solutions for large times for a harmonic lattice coupled to a Klein–Gordon field”, Theoret. and Math. Phys., 218:2 (2024), 241–263
T. V. Dudnikova, “On Mixing Conditions in Proving the Asymptotical Normality for Harmonic Crystals”, Lobachevskii J Math, 44:7 (2023), 2613
T. V. Dudnikova, “Local Stationarity for the Klein—Gordon Equations”, J Math Sci, 269:2 (2023), 173
T. V. Dudnikova, “On the stationary non-equilibrium measures for the “field–crystal” system”, Dokl. Math., 106:2 (2022), 332–335
T. V. Dudnikova, “Convergence to stationary non-equilibrium states for Klein–Gordon equations”, Izv. Math., 85:5 (2021), 932–952
Dudnikova V T., “Convergence to Stationary States and Energy Current For Infinite Harmonic Crystals”, Russ. J. Math. Phys., 26:4 (2019), 428–453
T. V. Dudnikova, “O neravnovesnykh sostoyaniyakh kristallicheskoi reshetki”, Preprinty IPM im. M. V. Keldysha, 2018, 015, 26 pp.
Dudnikova T.V., “On the Asymptotical Normality of Statistical Solutions For Wave Equations Coupled to a Particle”, Russ. J. Math. Phys., 24:2 (2017), 172–194
T. V. Dudnikova, “On the Asymptotic Normality of a Harmonic Crystal Coupled to a Wave Field”, Math. Notes, 99:6 (2016), 942–945
T. V. Dudnikova, “Caricature of hydrodynamics for lattice dynamics”, P-Adic Num Ultrametr Anal Appl, 4:4 (2012), 245
T. V. Dudnikova, “Deriving hydrodynamic equations for lattice systems”, Theoret. and Math. Phys., 169:3 (2011), 1668–1682
Dudnikova T.V., “Convergence to equilibrium distribution. The Klein–Gordon equation coupled to a particle”, Russ. J. Math. Phys., 17:1 (2010), 77–95
Dudnikova T.V., “Lattice dynamics in the half-space. Energy transport equation”, J. Math. Phys., 51:8 (2010), 083301, 25 pp.
Dudnikova T.V., “On the asymptotical normality of statistical solutions for harmonic crystals in half-space”, Russ. J. Math. Phys., 15:4 (2008), 460–472
T. V. Dudnikova, “Convergence to equilibrium of the wave equation in Rn with odd n⩾3”, Russian Math. Surveys, 61:1 (2006), 168–170
Dudnikova T.V., “On ergodic properties for harmonic crystals”, Russ. J. Math. Phys., 13:2 (2006), 123–130
Dudnikova T.V., Komech A.I., “On the convergence to a statistical equilibrium in the crystal coupled to a scalar field”, Russ. J. Math. Phys., 12:3 (2005), 301–325