Abstract:
The following assertions are proved. 1) The classes of $\gamma$-summing and $\gamma$-radonifying operators with values in a Banach space $X$ coincide iff $X$ does not contain isomorphic copies of $c_0$. 2) An operator $T$ from a Hilbert space into a Banach space of type 2 is $\gamma$-summing iff $T^*$ is absolutely 2-summing. 3) The covariance operator of a strong second order tight measure on a Banach space is nuclear. 4) If $X$ is a Banach space, then every positive symmetric and nuclear linear operator from $X^*$ into $X$ is Gaussian covariance iff $X$ is of type 2.
Citation:
W. Linde, V. I. Tarieladze, S. A. Čobanyan, “Characterization of certain classes
of Banach spaces by properties of Gaussian measures”, Teor. Veroyatnost. i Primenen., 25:1 (1980), 162–167; Theory Probab. Appl., 25:1 (1980), 159–164
\Bibitem{LinTarCho80}
\by W.~Linde, V.~I.~Tarieladze, S.~A.~{\v C}obanyan
\paper Characterization of certain classes
of Banach spaces by properties of Gaussian measures
\jour Teor. Veroyatnost. i Primenen.
\yr 1980
\vol 25
\issue 1
\pages 162--167
\mathnet{http://mi.mathnet.ru/tvp1042}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=560069}
\zmath{https://zbmath.org/?q=an:0419.60004|0456.60006}
\transl
\jour Theory Probab. Appl.
\yr 1980
\vol 25
\issue 1
\pages 159--164
\crossref{https://doi.org/10.1137/1125017}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1980LG24200017}
Linking options:
https://www.mathnet.ru/eng/tvp1042
https://www.mathnet.ru/eng/tvp/v25/i1/p162
This publication is cited in the following 4 articles:
Iain Henderson, “Sobolev regularity of Gaussian random fields”, Journal of Functional Analysis, 286:3 (2024), 110241
Yasuji Takahashi, Yoshiaki Okazaki, “On the relationship between ? p -Radonifying operators and other operator ideals in Banach spaces of stable typep”, Math. Ann., 281:1 (1988), 145
Jun Kawabe, “Probabilistic characterization of certain Banach spaces”, Kodai Math. J., 9:1 (1986)
Jun Kawabe, “Characterization of Hilbert spaces by the strong law of large numbers”, Journal of Multivariate Analysis, 20:1 (1986), 155