Abstract:
We address the uniqueness of weak solutions of the mixed Dirichlet–Steklov problem for the biharmonic equation in the exterior of a compact set in the class of functions having a finite Dirichlet integral with the weight |x|a. Depending on the parameter a, we establish some uniqueness theorems and obtain precise formulas for the dimension of the space of solutions.
Citation:
H. A. Matevossian, “Mixed Dirichlet–Steklov problem for the biharmonic equation in weighted spaces”, Tr. Semim. im. I. G. Petrovskogo, 31, 2016, 87–109; J. Math. Sci. (N. Y.), 234:4 (2018), 440–454
\Bibitem{Mat16}
\by H.~A.~Matevossian
\paper Mixed Dirichlet--Steklov problem for the biharmonic equation in weighted spaces
\serial Tr. Semim. im. I.~G.~Petrovskogo
\yr 2016
\vol 31
\pages 87--109
\mathnet{http://mi.mathnet.ru/tsp91}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2018
\vol 234
\issue 4
\pages 440--454
\crossref{https://doi.org/10.1007/s10958-018-4021-8}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85052679094}
Linking options:
https://www.mathnet.ru/eng/tsp91
https://www.mathnet.ru/eng/tsp/v31/p87
This publication is cited in the following 1 articles:
Hovik A Matevossian, “On the exterior Dirichlet-Neumann problem for the Biharmonic equation and its application in mechanics”, IOP Conf. Ser.: Mater. Sci. Eng., 918:1 (2020), 012099