Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1997, Volume 111, Number 1, Pages 77–93
DOI: https://doi.org/10.4213/tmf991
(Mi tmf991)
 

This article is cited in 3 scientific papers (total in 3 papers)

Perturbation of embedded eigenvalue by a nearly resonance

V. B. Belyaeva, A. K. Motovilovb

a Joint Institute for Nuclear Research
b Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics
Full-text PDF (311 kB) Citations (3)
References:
Abstract: The case of quantum-mechanical system (including electronic molecules) is considered where the Hamiltonian admits a separation, in particular by the Faddeev method, of a weakly coupled channel. Width (i.e. the imaginary part) of the resonance generated by a discrete spectrum eigenvalue of the separated channel is studied in the case where the main part of the Hamiltonian gives rise to another resonance. It is shown that if real parts of these resonances coincide and while a coupling between the separated and main channels is sufficiently small then the width of the resonance generated by the separated (molecular) channel is inversely proportional to the width of the main (nuclear) channel resonance. This phenomenon being a kind of a universal law may play an important role increasing the nuclear fusion probability in electronic molecules whose nuclear constituents have narrow pre-threshold resonances.
Received: 17.07.1996
English version:
Theoretical and Mathematical Physics, 1997, Volume 111, Issue 1, Pages 454–466
DOI: https://doi.org/10.1007/BF02634200
Bibliographic databases:
Language: Russian
Citation: V. B. Belyaev, A. K. Motovilov, “Perturbation of embedded eigenvalue by a nearly resonance”, TMF, 111:1 (1997), 77–93; Theoret. and Math. Phys., 111:1 (1997), 454–466
Citation in format AMSBIB
\Bibitem{BelMot97}
\by V.~B.~Belyaev, A.~K.~Motovilov
\paper Perturbation of embedded eigenvalue by a nearly resonance
\jour TMF
\yr 1997
\vol 111
\issue 1
\pages 77--93
\mathnet{http://mi.mathnet.ru/tmf991}
\crossref{https://doi.org/10.4213/tmf991}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1473425}
\zmath{https://zbmath.org/?q=an:0964.81525}
\transl
\jour Theoret. and Math. Phys.
\yr 1997
\vol 111
\issue 1
\pages 454--466
\crossref{https://doi.org/10.1007/BF02634200}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997XX96900006}
Linking options:
  • https://www.mathnet.ru/eng/tmf991
  • https://doi.org/10.4213/tmf991
  • https://www.mathnet.ru/eng/tmf/v111/i1/p77
  • This publication is cited in the following 3 articles:
    1. Belov P.A., “Energy Spectrum of Excitons in Square Quantum Wells”, Physica E, 112 (2019), 96–108  crossref  isi
    2. A. A. Arsen'ev, “Mathematical Model of Resonances and Tunneling in a System with a Bound State”, Theoret. and Math. Phys., 136:3 (2003), 1336–1345  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    3. Motovilov, AK, “Perturbation of a lattice spectral band by a nearby resonance”, Journal of Mathematical Physics, 42:6 (2001), 2490  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:528
    Full-text PDF :249
    References:89
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025