Abstract:
We present an infinite series of autonomous discrete equations on a square lattice with hierarchies of autonomous generalized symmetries and conservation laws in both directions. Their orders in both directions are equal to κN, where κ is an arbitrary natural number and N is the equation number in the series. Such a structure of hierarchies is new for discrete equations in the case N>2. The symmetries and conservation laws are constructed using the master symmetries, which are found directly together with generalized symmetries. Such a construction scheme is apparently new in the case of conservation laws. Another new point is that in one of the directions, we introduce the master symmetry time into the coefficients of the discrete equations. In the most interesting case N=2, we show that a second-order generalized symmetry is closely related to a relativistic Toda-type integrable equation. As far as we know, this property is very rare in the case of autonomous discrete equations.
Citation:
R. N. Garifullin, R. I. Yamilov, “An unusual series of autonomous discrete integrable equations on a square lattice”, TMF, 200:1 (2019), 50–71; Theoret. and Math. Phys., 200:1 (2019), 966–984
This publication is cited in the following 4 articles:
R. N. Garifullin, “Classification of semidiscrete equations of hyperbolic type. The case of third-order symmetries”, Theoret. and Math. Phys., 217:2 (2023), 1767–1776
R. N. Garifullin, R. I. Yamilov, “Modified series of integrable discrete equations on a quadratic lattice with a nonstandard symmetry structure”, Theoret. and Math. Phys., 205:1 (2020), 1264–1278
Garifullin R.N. Gubbiotti G. Yamilov I R., “Integrable Discrete Autonomous Quad-Equations Admitting, as Generalized Symmetries, Known Five-Point Differential-Difference Equations”, J. Nonlinear Math. Phys., 26:3 (2019), 333–357