Abstract:
One of us previously obtained and integrated the first examples of two-dimensional Schrödinger equations with a magnetic field belonging to the class of quasi–exactly solvable problems. It was shown that the wave functions are expressed in terms of degenerations of the Heun function: biconfluent and confluent Heun functions. Algebraic conditions were also found that determine the discrete spectrum and wave functions. Our goal here is to solve these algebraic equations numerically. In some cases, we can find an analytic approximation of the discrete spectrum.
Citation:
A. V. Marikhina, V. G. Marikhin, “Calculation of the discrete spectrum of some two-dimensional Schrödinger equations with a magnetic field”, TMF, 197:3 (2018), 464–474; Theoret. and Math. Phys., 197:3 (2018), 1797–1805
\Bibitem{MarMar18}
\by A.~V.~Marikhina, V.~G.~Marikhin
\paper Calculation of the~discrete spectrum of some two-dimensional Schr\"odinger equations with a~magnetic field
\jour TMF
\yr 2018
\vol 197
\issue 3
\pages 464--474
\mathnet{http://mi.mathnet.ru/tmf9573}
\crossref{https://doi.org/10.4213/tmf9573}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3881813}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018TMP...197.1797M}
\elib{https://elibrary.ru/item.asp?id=36448186}
\transl
\jour Theoret. and Math. Phys.
\yr 2018
\vol 197
\issue 3
\pages 1797--1805
\crossref{https://doi.org/10.1134/S0040577918120097}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000455189700009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85059662945}
Linking options:
https://www.mathnet.ru/eng/tmf9573
https://doi.org/10.4213/tmf9573
https://www.mathnet.ru/eng/tmf/v197/i3/p464
This publication is cited in the following 3 articles:
P. B. Acosta-Humánez, M. E. H. Ismail, N. Saad, “Sextic anharmonic oscillators and Heun differential equations”, Eur. Phys. J. Plus, 137:7 (2022)
H. R. Rastegar Sedehi, A. Arda, R. Sever, “Thermodynamic properties of a charged particle in non-uniform magnetic field”, Opt. Quantum Electron., 53:3 (2021), 142
Geeta Arora, Varun Joshi, R. C. Mittal, “Numerical Simulation of Nonlinear Schrödinger Equation in One and Two Dimensions”, Math Models Comput Simul, 11:4 (2019), 634