Abstract:
We study translation-invariant Gibbs measures for the ferromagnetic Potts model with q states on the Cayley tree of order k and generalize some earlier results. We consider the question of the extremality of the known translation-invariant Gibbs measures for the Potts model with three states on the Cayley tree of order k=3.
Citation:
U. A. Rozikov, R. M. Khakimov, F. Kh. Khaidarov, “Extremality of the translation-invariant Gibbs measures for the Potts model on the Cayley tree”, TMF, 196:1 (2018), 117–134; Theoret. and Math. Phys., 196:1 (2018), 1043–1058
\Bibitem{RozKhaKha18}
\by U.~A.~Rozikov, R.~M.~Khakimov, F.~Kh.~Khaidarov
\paper Extremality of the~translation-invariant Gibbs measures for the~Potts model on the~Cayley tree
\jour TMF
\yr 2018
\vol 196
\issue 1
\pages 117--134
\mathnet{http://mi.mathnet.ru/tmf9448}
\crossref{https://doi.org/10.4213/tmf9448}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3833549}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018TMP...196.1043R}
\elib{https://elibrary.ru/item.asp?id=35276535}
\transl
\jour Theoret. and Math. Phys.
\yr 2018
\vol 196
\issue 1
\pages 1043--1058
\crossref{https://doi.org/10.1134/S0040577918070103}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000440809300010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85051089244}
Linking options:
https://www.mathnet.ru/eng/tmf9448
https://doi.org/10.4213/tmf9448
https://www.mathnet.ru/eng/tmf/v196/i1/p117
This publication is cited in the following 12 articles:
Hasan Akin, Farrukh Mukhamedov, “The extremality of disordered phases for the mixed spin-(1,1/2) Ising model on a Cayley tree of arbitrary order”, J. Stat. Mech., 2024:1 (2024), 013207
Hasan Ak{\i}n, “New disordered phases of the (s,1/2)-mixed spin Ising model for arbitrary spin s”, Chaos, Solitons & Fractals, 189 (2024), 115733
M. T. Makhammadaliev, “Pure phases of the ferromagnetic Potts model with q states on the Cayley tree of order three”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 34:4 (2024), 499–517
G. Botirov, F. Haydarov, U. Qayumov, “Gibbs measures of the Blume–Emery–Griffiths model on the Cayley tree”, Math. Phys. Anal. Geom., 26:1 (2023), 7
H. Akin, “The classification of disordered phases of mixed spin (2,1/2) Ising model and the chaoticity of the corresponding dynamical system”, Chaos, Solitons & Fractals, 167 (2023), 113086
U. A. Rozikov, M. M. Rahmatullaev, R. M. Khakimov, “Periodic Gibbs measures for the Potts model in translation-invariant and periodic external fields on the Cayley tree”, Theoret. and Math. Phys., 210:1 (2022), 135–153
F. Mukhamedov, “Extremality of disordered phase of lambda-model on Cayley trees”, Algorithms, 15:1 (2022), 18
F. M. Mukhamedov, M. M. Rahmatullaev, M. A. Rasulova, “Extremality of translation-invariant Gibbs measures for the λ-model on the binary Cayley tree”, Theoret. and Math. Phys., 210:3 (2022), 411–424
H. Akin, F. Mukhamedov, “Phase transition for the Ising model with mixed spins on a Cayley tree”, J. Stat. Mech., 2022:5 (2022), 053204
U. A. Rozikov, “Gibbs measures of Potts model on Cayley trees: a survey and applications”, Rev. Math. Phys., 33:10 (2021), 2130007
N. M. Khatamov, “Krainost translyatsionno-invariantnykh mer Gibbsa dlya modeli Blyuma–Kapelya v sluchae “zhezl” na dereve Keli”, Ukr. Mat. Zhurn., 72:4 (2020), 540
N. M. Khatamov, “Translation-invariant extreme Gibbs measures for the Blume-Capel model withwand on a Cayley tree”, Ukr. Math. J., 72:4 (2020), 623–641