Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2017, Volume 193, Number 2, Pages 214–224
DOI: https://doi.org/10.4213/tmf9317
(Mi tmf9317)
 

This article is cited in 8 scientific papers (total in 8 papers)

Stability of solitary waves in membrane tubes: A weakly nonlinear analysis

A. T. Il'ichev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
Full-text PDF (409 kB) Citations (8)
References:
Abstract: We study the problem of the stability of solitary waves propagating in fluid-filled membrane tubes. We consider only waves whose speeds are close to speeds satisfying a linear dispersion relation (it is well known that there can be four families of solitary waves with such speeds), i.e., the waves with small (but finite) amplitudes branching from the rest state of the system. In other words, we use a weakly nonlinear description of solitary waves and show that if the solitary wave speed is bounded from zero, then the solitary wave itself is orbitally stable independently of whether the fluid is in the rest state at the initial time.
Keywords: membrane tube, solitary wave, bifurcation, orbital stability.
Funding agency Grant number
Russian Science Foundation 14-50-00005
This research was supported by a grant from the Russian Science Foundation (Project No. 14-50-00005).
Received: 12.12.2016
Revised: 22.03.2017
English version:
Theoretical and Mathematical Physics, 2017, Volume 193, Issue 2, Pages 1593–1601
DOI: https://doi.org/10.1134/S0040577917110034
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. T. Il'ichev, “Stability of solitary waves in membrane tubes: A weakly nonlinear analysis”, TMF, 193:2 (2017), 214–224; Theoret. and Math. Phys., 193:2 (2017), 1593–1601
Citation in format AMSBIB
\Bibitem{Ili17}
\by A.~T.~Il'ichev
\paper Stability of solitary waves in membrane tubes: A~weakly nonlinear
analysis
\jour TMF
\yr 2017
\vol 193
\issue 2
\pages 214--224
\mathnet{http://mi.mathnet.ru/tmf9317}
\crossref{https://doi.org/10.4213/tmf9317}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3718996}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017TMP...193.1593I}
\elib{https://elibrary.ru/item.asp?id=30512365}
\transl
\jour Theoret. and Math. Phys.
\yr 2017
\vol 193
\issue 2
\pages 1593--1601
\crossref{https://doi.org/10.1134/S0040577917110034}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000416925700003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85037641551}
Linking options:
  • https://www.mathnet.ru/eng/tmf9317
  • https://doi.org/10.4213/tmf9317
  • https://www.mathnet.ru/eng/tmf/v193/i2/p214
  • This publication is cited in the following 8 articles:
    1. A. T. Il'ichev, “Dynamics and spectral stability of soliton-like structures in fluid-filled membrane tubes”, Russian Math. Surveys, 75:5 (2020), 843–882  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    2. R. Wang, H. Ding, X. Yuan, N. Lv, L.-Q. Chen, “Different types of solitary waves in a thermo-hyperelastic neo-hookean cylindrical shell”, Compos. Struct., 243 (2020), 112178  crossref  isi
    3. Il'ichev A.T., Shargatov V.A., Fu Y.B., “Characterization and Dynamical Stability of Fully Nonlinear Strain Solitary Waves in a Fluid-Filled Hyperelastic Membrane Tube”, Acta Mech., 231:10 (2020), 4095–4110  crossref  mathscinet  isi
    4. A. T. Il'ichev, S. I. Sumskoi, V. A. Shargatov, “Unsteady flows in deformable pipes: the energy conservation law”, Proc. Steklov Inst. Math., 300 (2018), 68–77  mathnet  crossref  crossref  mathscinet  isi  elib
    5. V. A. Shargatov, A. P. Chugainova, S. V. Gorkunov, S. I. Sumskoi, “Flow structure behind a shock wave in a channel with periodically arranged obstacles”, Proc. Steklov Inst. Math., 300 (2018), 206–218  mathnet  crossref  crossref  mathscinet  isi  elib
    6. Chugainova A.P., Shargatov V.A., Gorkunov S.V., Sumskoi S.I., “Regimes of Shock Wave Propagation Through Comb-Shaped Obstacles”, AIP Conference Proceedings, 2025, ed. Todorov M., Amer Inst Physics, 2018, 080002-1  crossref  isi
    7. V. A. Shargatov, A. P. Chugainova, S. V. Gorkunov, S. I. Sumskoi, “Analytical and numerical solutions of the shock tube problem in a channel with a pseudo-perforated wall”, JPCS, 1099 (2018), 12013–8  mathnet  crossref  scopus
    8. A T Il'ichev, “Dynamical stability of running solitary waves in fluid-filled elastic membrane tubes”, J. Phys.: Conf. Ser., 1099 (2018), 012018  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:440
    Full-text PDF :128
    References:69
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025