Abstract:
We describe a Bäcklund transformation, i.e., a differentially related pair
of differential equations, in a coordinate manner appropriate for
calculations and applications. We present several known explanatory
examples, including Bäcklund transformations for gauge fields in a Minkowski space of arbitrary dimension.
This publication is cited in the following 20 articles:
Nida Raees, Irfan Mahmood, Ejaz Hussain, Usman Younas, Hosam O. Elansary, Sohail Mumtaz, “Dynamics of optical solitons and sensitivity analysis in fiber optics”, Physics Letters A, 2024, 130031
V. V. Zharinov, “Binary relations, Bäcklund transformations, and wave packet propagation”, Theoret. and Math. Phys., 205:1 (2020), 1245–1263
A. K. Gushchin, “The boundary values of solutions of an elliptic equation”, Sb. Math., 210:12 (2019), 1724–1752
A. K. Gushchin, “On the Existence of $L_2$ Boundary Values of Solutions to an Elliptic Equation”, Proc. Steklov Inst. Math., 306 (2019), 47–65
V. V. Zharinov, “Analysis in Noncommutative Algebras and Modules”, Proc. Steklov Inst. Math., 306 (2019), 90–101
A. K. Gushchin, “A criterion for the existence of $L_p$ boundary values of solutions to an elliptic equation”, Proc. Steklov Inst. Math., 301 (2018), 44–64
M. O. Katanaev, “Chern–Simons action and disclinations”, Proc. Steklov Inst. Math., 301 (2018), 114–133
Yu. N. Drozhzhinov, “Asymptotically homogeneous generalized functions and some of their applications”, Proc. Steklov Inst. Math., 301 (2018), 65–81
B. O. Volkov, “Lévy Laplacians in Hida calculus and Malliavin calculus”, Proc. Steklov Inst. Math., 301 (2018), 11–24
V. V. Zharinov, “Analysis in algebras and modules”, Proc. Steklov Inst. Math., 301 (2018), 98–108
N. A. Gusev, “On the definitions of boundary values of generalized solutions to an elliptic-type equation”, Proc. Steklov Inst. Math., 301 (2018), 39–43
A. S. Trushechkin, “Finding stationary solutions of the Lindblad equation by analyzing the entropy production functional”, Proc. Steklov Inst. Math., 301 (2018), 262–271
V. V. Zharinov, “Analysis in differential algebras and modules”, Theoret. and Math. Phys., 196:1 (2018), 939–956
N. G. Marchuk, “Classification of extended Clifford algebras”, Russian Math. (Iz. VUZ), 62:11 (2018), 23–27
M. O. Katanaev, “Description of disclinations and dislocations by the Chern–Simons action for $\mathbb{SO}(3)$ connection”, Phys. Part. Nuclei, 49:5 (2018), 890–893
B. O. Volkov, “Lévy Laplacians and annihilation process”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 160, no. 2, Izd-vo Kazanskogo un-ta, Kazan, 2018, 399–409
M. O. Katanaev, “Cosmological models with homogeneous and isotropic spatial sections”, Theoret. and Math. Phys., 191:2 (2017), 661–668
V. V. Zharinov, “Lie–Poisson structures over differential algebras”, Theoret. and Math. Phys., 192:3 (2017), 1337–1349
V. V. Zharinov, “Hamiltonian operators in differential algebras”, Theoret. and Math. Phys., 193:3 (2017), 1725–1736
B. O. Volkov, “Stochastic Levy differential operators and Yang-Mills equations”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 20:2 (2017), 1750008