Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2017, Volume 191, Number 1, Pages 3–13
DOI: https://doi.org/10.4213/tmf9193
(Mi tmf9193)
 

This article is cited in 3 scientific papers (total in 3 papers)

Global unsolvability of a nonlinear conductor model in the quasistationary approximation

M. O. Korpusov, E. V. Yushkov

Physics Faculty, Lomonosov Moscow State University, Moscow, Russia
Full-text PDF (379 kB) Citations (3)
References:
Abstract: We study initial-boundary value problems for a model differential equation in a bounded region with a quadratic nonlinearity of a special type typical for the theory of conductors. Using the test function method, we show that such a nonlinearity can lead to global unsolvability with respect to time, which from the physical standpoint means an electrical breakdown of the conductor in a finite time. For the simplest test functions, we obtain sufficient conditions for the unsolvability of the model problems and estimates of the blowup rate and time. With concrete examples, we demonstrate the possibility of using the method for one-, two- and three-dimensional problems with classical and nonclassical boundary conditions. We separately consider the Neumann and Navier problems in bounded RN regions (N2).
Keywords: conductor theory, noncoercive nonlinearity, initial-boundary value problem, global unsolvability, test function, blowup time estimation.
Received: 22.03.2016
Revised: 24.05.2016
English version:
Theoretical and Mathematical Physics, 2017, Volume 191, Issue 1, Pages 471–479
DOI: https://doi.org/10.1134/S0040577917040018
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. O. Korpusov, E. V. Yushkov, “Global unsolvability of a nonlinear conductor model in the quasistationary approximation”, TMF, 191:1 (2017), 3–13; Theoret. and Math. Phys., 191:1 (2017), 471–479
Citation in format AMSBIB
\Bibitem{KorYus17}
\by M.~O.~Korpusov, E.~V.~Yushkov
\paper Global unsolvability of a~nonlinear conductor model in the~quasistationary approximation
\jour TMF
\yr 2017
\vol 191
\issue 1
\pages 3--13
\mathnet{http://mi.mathnet.ru/tmf9193}
\crossref{https://doi.org/10.4213/tmf9193}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3631854}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017TMP...191..471K}
\elib{https://elibrary.ru/item.asp?id=28931470}
\transl
\jour Theoret. and Math. Phys.
\yr 2017
\vol 191
\issue 1
\pages 471--479
\crossref{https://doi.org/10.1134/S0040577917040018}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000400773000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85018751478}
Linking options:
  • https://www.mathnet.ru/eng/tmf9193
  • https://doi.org/10.4213/tmf9193
  • https://www.mathnet.ru/eng/tmf/v191/i1/p3
  • This publication is cited in the following 3 articles:
    1. I. K. Katasheva, M. O. Korpusov, A. A. Panin, “On blow-up and on global existence of weak solutions to Cauchy problem for some nonlinear equation of the pseudoparabolic type”, VMU, 2023, no. №6_2023, 2360103–1  crossref
    2. I. K. Katasheva, M. O. Korpusov, A. A. Panin, “On Blow-up and Global Existence of Weak Solutions to Cauchy Problem for Some Nonlinear Equation of the Pseudoparabolic Type”, Moscow Univ. Phys., 78:6 (2023), 757  crossref
    3. A. I. Aristov, “Exact solutions of the equation of a nonlinear conductor model”, Differ. Equ., 56:9 (2020), 1113–1118  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:661
    Full-text PDF :172
    References:133
    First page:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025