Abstract:
We briefly review the uniqueness method, which is a powerful technique for calculating multiloop Feynman diagrams in theories with conformal symmetries. We use the method in the momentum space and show its effectiveness in calculating a two-loop massless propagator Feynman diagram with a noninteger index on the central line. We use the obtained result to compute the optical conductivity of graphene at the infrared Lorentz-invariant fixed point. We analyze the effect of counterterms and compare with the nonrelativistic limit.
Citation:
S. Teber, A. V. Kotikov, “The method of uniqueness and the optical conductivity of graphene: New application of a powerful technique for multiloop calculations”, TMF, 190:3 (2017), 519–532; Theoret. and Math. Phys., 190:3 (2017), 446–457
\Bibitem{TebKot17}
\by S.~Teber, A.~V.~Kotikov
\paper The~method of uniqueness and the~optical conductivity of graphene: New application of a~powerful technique for multiloop calculations
\jour TMF
\yr 2017
\vol 190
\issue 3
\pages 519--532
\mathnet{http://mi.mathnet.ru/tmf9161}
\crossref{https://doi.org/10.4213/tmf9161}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3629100}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017TMP...190..446T}
\elib{https://elibrary.ru/item.asp?id=28405222}
\transl
\jour Theoret. and Math. Phys.
\yr 2017
\vol 190
\issue 3
\pages 446--457
\crossref{https://doi.org/10.1134/S004057791703014X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000399022100014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85016760724}
Linking options:
https://www.mathnet.ru/eng/tmf9161
https://doi.org/10.4213/tmf9161
https://www.mathnet.ru/eng/tmf/v190/i3/p519
This publication is cited in the following 19 articles:
Anatoly V. Kotikov, “Effective Quantum Field Theory Methods for Calculating Feynman Integrals”, Symmetry, 16:1 (2023), 52
A. V. Kotikov, “Short Review of Interaction Effects in Graphene”, Phys. Part. Nuclei Lett., 20:5 (2023), 1108
R. F. Ozela, V. S. Alves, G. C. Magalhaes, L. O. Nascimento, “Effects of the pseudo-Chern-Simons action for strongly correlated electrons in a plane”, Phys. Rev. D, 105:5 (2022), 056004
A. V. Kotikov, “Some examples of calculation of massless and massive Feynman integrals”, Particles, 4:3 (2021), 361–380
Anatoly V. Kotikov, Texts & Monographs in Symbolic Computation, Anti-Differentiation and the Calculation of Feynman Amplitudes, 2021, 235
J. Baez Cuevas, A. Raya, J. C. Rojas, “Chiral symmetry restoration in reduced qed at finite temperature in the supercritical coupling regime”, Phys. Rev. D, 102:5 (2020), 056020
A. James, A. V. Kotikov, S. Teber, “Landau-khalatnikov-fradkin transformation of the fermion propagator in massless reduced qed”, Phys. Rev. D, 101:4 (2020), 045011
A. Avdoshkin, V. Kozii, J. E. Moore, “Interactions remove the quantization of the chiral photocurrent at Weyl points”, Phys. Rev. Lett., 124:19 (2020), 196603
Anatoly V. Kotikov, Sofian Teber, “Critical Behavior of (2 + 1)-Dimensional QED: 1/N Expansion”, Particles, 3:2 (2020), 345
Anatoly V. Kotikov, “About Calculation of Massless and Massive Feynman Integrals”, Particles, 3:2 (2020), 394
L. Di Pietro, D. Gaiotto, E. Lauria, J. Wu, “3d abelian gauge theories at the boundary”, J. High Energy Phys., 2019, no. 5, 091
A. V. Kotikov, S. Teber, “Multi-loop techniques for massless feynman diagram calculations”, Phys. Part. Nuclei, 50:1 (2019), 1–41
S. Teber, A. V. Kotikov, “Review of electron–electron interaction effects in planar Dirac liquids”, Theoret. and Math. Phys., 200:2 (2019), 1222–1236
G. Grignani, G. W. Semenoff, “Defect qed: dielectric without a dielectric, monopole without a monopole”, J. High Energy Phys., 2019, no. 11, 114
H.-t. Feng, Y.-h. Xia, H.-Zong, “Finite-volume effects on the chiral phase transition of thermal qed(3)”, Phys. Rev. D, 100:5 (2019), 054012
A. V. Kotikov, S. Teber, “New results for a two-loop massless propagator-type Feynman diagram”, Theoret. and Math. Phys., 194:2 (2018), 284–294
S. Teber, A. V. Kotikov, “Field theoretic renormalization study of reduced quantum electrodynamics and applications to the ultrarelativistic limit of Dirac liquids”, Phys. Rev. D, 97:7 (2018), 074004
S. Teber, A. V. Kotikov, “Field theoretic renormalization study of interaction corrections to the universal ac conductivity of graphene”, J. High Energy Phys., 2018, no. 7, 082
Hsiao W.-H., Son D.T., “Duality and Universal Transport in Mixed-Dimension Electrodynamics”, Phys. Rev. B, 96:7 (2017), 075127