Processing math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2017, Volume 190, Number 3, Pages 403–418
DOI: https://doi.org/10.4213/tmf9132
(Mi tmf9132)
 

This article is cited in 4 scientific papers (total in 4 papers)

The WKB method for the quantum mechanical two-Coulomb-center problem

M. Hnaticha, V. M. Khmarab, V. Yu. Lazurc, O. K. Reityc

a Peoples' Friendship University of Russia, Moscow, Russia
b Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
c Department of Physics, Uzhgorod State University, Uzhgorod, Ukraine
Full-text PDF (487 kB) Citations (4)
References:
Abstract: Using a modified perturbation theory, we obtain asymptotic expressions for the two-center quasiradial and quasiangular wave functions for large internuclear distances R. We show that in each order of 1/R, corrections to the wave functions are expressed in terms of a finite number of Coulomb functions with a modified charge. We derive simple analytic expressions for the first, second, and third corrections. We develop a consistent scheme for obtaining WKB expansions for solutions of the quasiangular equation in the quantum mechanical two-Coulomb-center problem. In the framework of this scheme, we construct semiclassical two-center wave functions for large distances between fixed positively charged particles (nuclei) for the entire space of motion of a negatively charged particle (electron). The method ensures simple uniform estimates for eigenfunctions at arbitrary large internuclear distances R, including R1. In contrast to perturbation theory, the semiclassical approximation is not related to the smallness of the interaction and hence has a wider applicability domain, which permits investigating qualitative laws for the behavior and properties of quantum mechanical systems.
Keywords: semiclassical approximation, WKB method, two Coulomb centers, asymptotic solution.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 02.a03.21.0008
Ministerstvo Školstva, Vedy, Výskumu a Športu Slovenskej Republiky 1/0345/17
This research was supported by the Ministry of Education and Science of the Russian Federation (Agreement No. 02.a03.21.0008) and the Ministry of Education, Science, Research, and Sport of the Slovak Republic (VEGA Grant No. 1/0345/17).
Received: 23.12.2015
Revised: 03.02.2016
English version:
Theoretical and Mathematical Physics, 2017, Volume 190, Issue 3, Pages 345–358
DOI: https://doi.org/10.1134/S0040577917030047
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. Hnatich, V. M. Khmara, V. Yu. Lazur, O. K. Reity, “The WKB method for the quantum mechanical two-Coulomb-center problem”, TMF, 190:3 (2017), 403–418; Theoret. and Math. Phys., 190:3 (2017), 345–358
Citation in format AMSBIB
\Bibitem{GnaKhmLaz17}
\by M.~Hnatich, V.~M.~Khmara, V.~Yu.~Lazur, O.~K.~Reity
\paper The~WKB method for the~quantum mechanical two-Coulomb-center problem
\jour TMF
\yr 2017
\vol 190
\issue 3
\pages 403--418
\mathnet{http://mi.mathnet.ru/tmf9132}
\crossref{https://doi.org/10.4213/tmf9132}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3629090}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017TMP...190..345H}
\elib{https://elibrary.ru/item.asp?id=28405203}
\transl
\jour Theoret. and Math. Phys.
\yr 2017
\vol 190
\issue 3
\pages 345--358
\crossref{https://doi.org/10.1134/S0040577917030047}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000399022100004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85016808811}
Linking options:
  • https://www.mathnet.ru/eng/tmf9132
  • https://doi.org/10.4213/tmf9132
  • https://www.mathnet.ru/eng/tmf/v190/i3/p403
  • This publication is cited in the following 4 articles:
    1. Elena Shcherbakova, Sergey Knyazev, PROCEEDING OF THE 7TH INTERNATIONAL CONFERENCE OF SCIENCE, TECHNOLOGY, AND INTERDISCIPLINARY RESEARCH (IC-STAR 2021), 2601, PROCEEDING OF THE 7TH INTERNATIONAL CONFERENCE OF SCIENCE, TECHNOLOGY, AND INTERDISCIPLINARY RESEARCH (IC-STAR 2021), 2023, 050020  crossref
    2. E. E. Shcherbakova, S. Yu. Knyazev, “Numerical simulation of physical fields by the collocation method”, Russ. Phys. J., 64:12 (2022), 2283  crossref
    3. V. M. Khmara, M. Hnatic, V. Yu. Lazur, O. K. Reity, “Quasicrossings of potential curves in the two-Coulomb-center problem”, Eur. Phys. J. D, 72:2 (2018), 39  crossref  isi  scopus
    4. M. Hnatic, V. M. Khmara, V. Yu. Lazur, O. K. Reity, “Splitting of potential curves in the two-Coulomb-centre problem”, Mathematical Modeling and Computational Physics 2017 (MMCP 2017), EPJ Web Conf., 173, eds. G. Adam, J. Busa, M. Hnatic, D. Podgainy, EDP Sciences, 2018, UNSP 02008  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:917
    Full-text PDF :201
    References:72
    First page:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025