Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2016, Volume 186, Number 1, Pages 51–75
DOI: https://doi.org/10.4213/tmf8975
(Mi tmf8975)
 

This article is cited in 3 scientific papers (total in 3 papers)

Dissipative and nonunitary solutions of operator commutation relations

K. A. Makarova, È. R. Tsekanovskiib

a Department of Mathematics, University of Missouri, University of Missouri, Columbia, Missouri, USA
b Department of Mathematics, Niagara University, Lewiston, NY, USA
Full-text PDF (594 kB) Citations (3)
References:
Abstract: We study the (generalized) semi-Weyl commutation relations UgAUg=g(A) on Dom(A), where A is a densely defined operator and GgUg is a unitary representation of the subgroup G of the affine group G, the group of affine orientation-preserving transformations of the real axis. If A is a symmetric operator, then the group G induces an action/flow on the operator unit ball of contracting transformations from Ker(AiI) to Ker(A+iI). We establish several fixed-point theorems for this flow. In the case of one-parameter continuous subgroups of linear transformations, self-adjoint (maximal dissipative) operators associated with the fixed points of the flow yield solutions of the (restricted) generalized Weyl commutation relations. We show that in the dissipative setting, the restricted Weyl relations admit a variety of representations that are not unitarily equivalent. For deficiency indices (1,1), the basic results can be strengthened and set in a separate case.
Keywords: Weyl commutation relation, affine group, deficiency index, self-adjoint extension.
English version:
Theoretical and Mathematical Physics, 2016, Volume 186, Issue 1, Pages 41–60
DOI: https://doi.org/10.1134/S0040577916010049
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: K. A. Makarov, È. R. Tsekanovskii, “Dissipative and nonunitary solutions of operator commutation relations”, TMF, 186:1 (2016), 51–75; Theoret. and Math. Phys., 186:1 (2016), 41–60
Citation in format AMSBIB
\Bibitem{MakTse16}
\by K.~A.~Makarov, \`E.~R.~Tsekanovskii
\paper Dissipative and nonunitary solutions of operator commutation relations
\jour TMF
\yr 2016
\vol 186
\issue 1
\pages 51--75
\mathnet{http://mi.mathnet.ru/tmf8975}
\crossref{https://doi.org/10.4213/tmf8975}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3462739}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...186...41M}
\elib{https://elibrary.ru/item.asp?id=25707836}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 186
\issue 1
\pages 41--60
\crossref{https://doi.org/10.1134/S0040577916010049}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000369418700003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84957538220}
Linking options:
  • https://www.mathnet.ru/eng/tmf8975
  • https://doi.org/10.4213/tmf8975
  • https://www.mathnet.ru/eng/tmf/v186/i1/p51
  • This publication is cited in the following 3 articles:
    1. K. A. Makarov, E. Tsekanovskii, “The Livšic function of a homogeneous symmetric operator and the multiplication theorem”, Ann. Funct. Anal., 15:3 (2024)  crossref
    2. M. M. Malamud, V. V. Marchenko, “Invariant Schrödinger Operators with Point Interactions at the Vertices of a Regular Polyhedron”, Math. Notes, 110:3 (2021), 463–469  mathnet  crossref  crossref  isi  elib
    3. Bekker M.B., Bohner M.J., Ugol'nikov A.P., Voulov H., “Parametrization of Scale-Invariant Self-Adjoint Extensions of Scale-Invariant Symmetric Operators”, Methods Funct. Anal. Topol., 24:1 (2018), 1–15  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:543
    Full-text PDF :168
    References:108
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025