Abstract:
We describe the relation between operators of invariant differentiation and
invariant operators on orbits of Lie group actions. We propose a new
effective method for finding differential invariants and operators of
invariant differentiation and present examples.
Keywords:
group analysis of differential equations, differential invariant, operator of invariant differentiation, invariant operator.
Citation:
M. M. Goncharovskiy, I. V. Shirokov, “Differential invariants and operators of invariant differentiation of the projectable action of Lie groups”, TMF, 183:2 (2015), 202–221; Theoret. and Math. Phys., 183:2 (2015), 619–636
\Bibitem{GonShi15}
\by M.~M.~Goncharovskiy, I.~V.~Shirokov
\paper Differential invariants and operators of invariant differentiation of the~projectable action of Lie groups
\jour TMF
\yr 2015
\vol 183
\issue 2
\pages 202--221
\mathnet{http://mi.mathnet.ru/tmf8792}
\crossref{https://doi.org/10.4213/tmf8792}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3399642}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015TMP...183..619G}
\elib{https://elibrary.ru/item.asp?id=23421745}
\transl
\jour Theoret. and Math. Phys.
\yr 2015
\vol 183
\issue 2
\pages 619--636
\crossref{https://doi.org/10.1007/s11232-015-0285-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000355826000003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84930643475}
Linking options:
https://www.mathnet.ru/eng/tmf8792
https://doi.org/10.4213/tmf8792
https://www.mathnet.ru/eng/tmf/v183/i2/p202
This publication is cited in the following 2 articles:
F. Barbaresco, “Lie group statistics and lie group machine learning based on Souriau lie groups thermodynamics & Koszul-Souriau-Fisher metric: new entropy definition as generalized Casimir invariant function in coadjoint representation”, Entropy, 22:6 (2020), 642
R. K. Gazizov, A. A. Gainetdinova, “Operator of invariant differentiation and its application for integrating systems of ordinary differential equations”, Ufa Math. J., 9:4 (2017), 12–21