Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1998, Volume 115, Number 3, Pages 323–348
DOI: https://doi.org/10.4213/tmf877
(Mi tmf877)
 

This article is cited in 5 scientific papers (total in 5 papers)

Nonlinear σσ-model in a curved space, gauge equivalence, and exact solutions of (2+0)(2+0)-dimensional integrable equations

E. Sh. Gutshabasha, V. D. Lipovskii, S. S. Nikulichev

a V. A. Fock Institute of Physics, Saint-Petersburg State University
Full-text PDF (331 kB) Citations (5)
References:
Abstract: We propose a nonlinear σσ-model in a curved space as a general integrable elliptic model. We construct its exact solutions and obtain energy estimates near the critical point. We consider the Pohlmeyer transformation in Euclidean space and investigate the gauge equivalence conditions for a broad class of elliptic equations. We develop the inverse scattering transform method for the shsh-Gordon equation and evaluate its exact and asymptotic solutions.
Received: 14.01.1998
English version:
Theoretical and Mathematical Physics, 1998, Volume 115, Issue 3, Pages 619–638
DOI: https://doi.org/10.1007/BF02575486
Bibliographic databases:
Language: Russian
Citation: E. Sh. Gutshabash, V. D. Lipovskii, S. S. Nikulichev, “Nonlinear σσ-model in a curved space, gauge equivalence, and exact solutions of (2+0)(2+0)-dimensional integrable equations”, TMF, 115:3 (1998), 323–348; Theoret. and Math. Phys., 115:3 (1998), 619–638
Citation in format AMSBIB
\Bibitem{GutLipNik98}
\by E.~Sh.~Gutshabash, V.~D.~Lipovskii, S.~S.~Nikulichev
\paper Nonlinear $\sigma$-model in a curved space, gauge equivalence, and exact solutions of
$(2+0)$-dimensional integrable equations
\jour TMF
\yr 1998
\vol 115
\issue 3
\pages 323--348
\mathnet{http://mi.mathnet.ru/tmf877}
\crossref{https://doi.org/10.4213/tmf877}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1692414}
\zmath{https://zbmath.org/?q=an:1113.81095}
\elib{https://elibrary.ru/item.asp?id=13278930}
\transl
\jour Theoret. and Math. Phys.
\yr 1998
\vol 115
\issue 3
\pages 619--638
\crossref{https://doi.org/10.1007/BF02575486}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000075883900001}
Linking options:
  • https://www.mathnet.ru/eng/tmf877
  • https://doi.org/10.4213/tmf877
  • https://www.mathnet.ru/eng/tmf/v115/i3/p323
  • This publication is cited in the following 5 articles:
    1. E. Sh. Gutshabash, “Nonlinear sigma model, Zakharov–Shabat method, and new exact forms of the minimal surfaces in ${\mathbb R}^3$”, JETP Letters, 99:12 (2014), 715–719  mathnet  crossref  crossref  isi  elib  elib
    2. Mehrabi, AR, “ANALYSIS AND SIMULATION OF LONG-RANGE CORRELATIONS IN CURVED SPACE”, International Journal of Modern Physics C, 20:8 (2009), 1211  crossref  zmath  adsnasa  isi  scopus  scopus  scopus
    3. E. Sh. Gutshabash, “Hydrodynamical vortice on the plain”, J. Math. Sci. (N. Y.), 143:1 (2007), 2765–2772  mathnet  crossref  mathscinet  zmath
    4. Pritula, GM, “Stationary structures in two-dimensional continuous Heisenberg ferromagnetic spin system”, Journal of Nonlinear Mathematical Physics, 10:3 (2003), 256  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    5. E.Sh. Gutshabash, International Seminar. Day on Diffraction. Proceedings (IEEE Cat. No.99EX367), 1999, 48  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:552
    Full-text PDF :267
    References:75
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025