Abstract:
We show that the spectrum of the Dirichlet problem for the Laplace operator in a layer with a doubly periodic structure has gaps and determine several characteristics of their location. The result is obtained by asymptotic analysis of a model spectral problem on the periodicity cell.
Keywords:
Dirichlet problem in a doubly periodic layer, asymptotic behavior, eigenvalue localization, spectral gap.
Citation:
S. A. Nazarov, “Spectral properties of a thin layer with a doubly periodic family of thinning regions”, TMF, 174:3 (2013), 398–415; Theoret. and Math. Phys., 174:3 (2013), 343–359
\Bibitem{Naz13}
\by S.~A.~Nazarov
\paper Spectral properties of a~thin layer with a~doubly periodic family of thinning regions
\jour TMF
\yr 2013
\vol 174
\issue 3
\pages 398--415
\mathnet{http://mi.mathnet.ru/tmf8376}
\crossref{https://doi.org/10.4213/tmf8376}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3171515}
\zmath{https://zbmath.org/?q=an:1287.35052}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013TMP...174..343N}
\elib{https://elibrary.ru/item.asp?id=20732590}
\transl
\jour Theoret. and Math. Phys.
\yr 2013
\vol 174
\issue 3
\pages 343--359
\crossref{https://doi.org/10.1007/s11232-013-0031-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000317346700004}
\elib{https://elibrary.ru/item.asp?id=20430962}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84875997614}
Linking options:
https://www.mathnet.ru/eng/tmf8376
https://doi.org/10.4213/tmf8376
https://www.mathnet.ru/eng/tmf/v174/i3/p398
This publication is cited in the following 9 articles:
D. B. Davletov, O. B. Davletov, R. R. Davletova, A. A. Ershov, “O sobstvennykh elementakh dvumernoi kraevoi zadachi tipa Steklova dlya operatora Lame”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 33:1 (2023), 54–65
Bakharev F.L., Matveenko S.G., “Localization of Eigenfunctions in a Narrow Kirchhoff Plate”, Russ. J. Math. Phys., 28:2 (2021), 156–178
S. A. Nazarov, “Discrete spectrum of cranked quantum and elastic waveguides”, Comput. Math. Math. Phys., 56:5 (2016), 864–880
Nazarov S.A., Perez E., Taskinen J., “Localization effect for Dirichlet eigenfunctions in thin non-smooth domains”, Trans. Am. Math. Soc., 368:7 (2016), 4787–4829
S. A. Nazarov, “Asymptotics of the eigenvalues of boundary value problems for the Laplace operator in a three-dimensional domain with a thin closed tube”, Trans. Moscow Math. Soc., 76:1 (2015), 1–53
S. A. Nazarov, “Eigenmodes of a thin elastic layer between periodic rigid profiles”, Comput. Math. Math. Phys., 55:10 (2015), 1684–1697
Nazarov S.A., “Asymptotics of the natural oscillations of a thin elastic gasket between absolutely rigid profiles”, Pmm-J. Appl. Math. Mech., 79:6 (2015), 577–586
S. A. Nazarov, “Localization of longitudinal and transverse oscillations in a thin curved elastic gasket”, Dokl. Phys., 60:10 (2015), 446
S. A. Nazarov, “Asymptotics of eigenvalues of the Dirichlet problem in a skewed T-shaped waveguide”, Comput. Math. Math. Phys., 54:5 (2014), 793–814