Abstract:
We consider a third-order generalized Monge–Ampère equation $u_{yyy}- u_{xxy}^2+u_{xxx}u_{xyy}=0$, which is closely related to the associativity equation in two-dimensional topological field theory. We describe all integrable structures related to it: Hamiltonian, symplectic, and also recursion operators. We construct infinite hierarchies of symmetries and conservation laws.
Citation:
A. M. Verbovetsky, R. Vitolo, P. Kersten, I. S. Krasil'shchik, “Integrable structures for a generalized Monge–Ampère equation”, TMF, 171:2 (2012), 208–224; Theoret. and Math. Phys., 171:2 (2012), 600–615
This publication is cited in the following 6 articles:
Ghezelbash A.M., “M-Branes on Minimal Surfaces”, Eur. Phys. J. Plus, 137:2 (2022), 196
Vasicek J. Vitolo R., “Wdvv Equations and Invariant Bi-Hamiltonian Formalism”, J. High Energy Phys., 2021, no. 8, 129
E. V. Ferapontov, M. V. Pavlov, R. F. Vitolo, “Systems of conservation laws with third-order Hamiltonian structures”, Lett. Math. Phys., 108:6 (2018), 1525–1550
M. V. Pavlov, R. F. Vitolo, “Remarks on the Lagrangian representation of bi-Hamiltonian equations”, J. Geom. Phys., 113 (2017), 239–249
A. M. Ghezelbash, V. Kumar, “Exact helicoidal and catenoidal solutions in five- and higher-dimensional Einstein-Maxwell theory”, Phys. Rev. D, 95:12 (2017), 124045
M. V. Pavlov, R. F. Vitolo, “On the bi-Hamiltonian geometry of WDVV equations”, Lett. Math. Phys., 105:8 (2015), 1135–1163