Abstract:
We construct a family of relativistic-invariant generating functionals of the form F(f∗,g)=exp{γ∫dkω(k)f∗(k)g(k)} for the non-Fock representations of the CCR. We analyze the first order in the coupling constant of the model theory. In this theory, the asymptotic in field coincides with the field φ(x) corresponding to such a functional. We prove that in the first order, the in and out fields are unitarily equivalent and the scattering matrix consequently exists. Moreover, the kinematics of the “non-Fock quantum field theory” is much richer than the standard kinematics: in this case, the S-matrix does not coincide with the chronologically ordered exponent of the interaction Lagrangian.
Citation:
O. I. Zavialov, A. M. Malokostov, “Quantum field theory with non-Fock asymptotic fields: the existence of the S-matrix”, TMF, 121:1 (1999), 25–39; Theoret. and Math. Phys., 121:1 (1999), 1281–1293
\Bibitem{ZavMal99}
\by O.~I.~Zavialov, A.~M.~Malokostov
\paper Quantum field theory with non-Fock asymptotic fields: the existence of the $S$-matrix
\jour TMF
\yr 1999
\vol 121
\issue 1
\pages 25--39
\mathnet{http://mi.mathnet.ru/tmf796}
\crossref{https://doi.org/10.4213/tmf796}
\zmath{https://zbmath.org/?q=an:0985.81061}
\transl
\jour Theoret. and Math. Phys.
\yr 1999
\vol 121
\issue 1
\pages 1281--1293
\crossref{https://doi.org/10.1007/BF02557228}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000084350700003}
Linking options:
https://www.mathnet.ru/eng/tmf796
https://doi.org/10.4213/tmf796
https://www.mathnet.ru/eng/tmf/v121/i1/p25
This publication is cited in the following 2 articles:
O. I. Zavialov, A. M. Malokostov, “V. A. Fock and N. N. Bogoliubov and their role in establishing modern quantum field theory”, Theoret. and Math. Phys., 120:3 (1999), 1133–1144
O. I. Zavialov, A. M. Malokostov, “Wigner function for free relativistic particles”, Theoret. and Math. Phys., 119:1 (1999), 448–453