Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1999, Volume 120, Number 2, Pages 277–290
DOI: https://doi.org/10.4213/tmf775
(Mi tmf775)
 

This article is cited in 6 scientific papers (total in 6 papers)

Schrödinger operator with a perturbed small steplike potential

Yu. P. Chuburin

Physical-Technical Institute of the Ural Branch of the Russian Academy of Sciences
Full-text PDF (245 kB) Citations (6)
References:
Abstract: We consider the Schrödinger operator with a potential that is periodic with respect to two variables and has the shape of a small step perturbed by a function decreasing with respect to a third variable. We show that under certain conditions on the magnitudes of the step and the perturbation, a unique level that can be an eigenvalue or a resonance exists near the essential spectrum. We find the asymptotic value of this level.
Received: 27.11.1998
English version:
Theoretical and Mathematical Physics, 1999, Volume 120, Issue 2, Pages 1045–1057
DOI: https://doi.org/10.1007/BF02557411
Bibliographic databases:
Language: Russian
Citation: Yu. P. Chuburin, “Schrödinger operator with a perturbed small steplike potential”, TMF, 120:2 (1999), 277–290; Theoret. and Math. Phys., 120:2 (1999), 1045–1057
Citation in format AMSBIB
\Bibitem{Chu99}
\by Yu.~P.~Chuburin
\paper Schr\"odinger operator with a perturbed small steplike potential
\jour TMF
\yr 1999
\vol 120
\issue 2
\pages 277--290
\mathnet{http://mi.mathnet.ru/tmf775}
\crossref{https://doi.org/10.4213/tmf775}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1737292}
\zmath{https://zbmath.org/?q=an:0991.81022}
\transl
\jour Theoret. and Math. Phys.
\yr 1999
\vol 120
\issue 2
\pages 1045--1057
\crossref{https://doi.org/10.1007/BF02557411}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000083500600008}
Linking options:
  • https://www.mathnet.ru/eng/tmf775
  • https://doi.org/10.4213/tmf775
  • https://www.mathnet.ru/eng/tmf/v120/i2/p277
  • This publication is cited in the following 6 articles:
    1. Yu. P. Chuburin, “Electron scattering at the domain wall”, Theoret. and Math. Phys., 166:2 (2011), 234–243  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    2. N. I. Pletnikova, “Zadacha rasseyaniya dlya uravneniya Shredingera s potentsialom tipa vozmuschennoi stupenki”, Izv. IMI UdGU, 2006, no. 1(35), 89–97  mathnet
    3. N. I. Pletnikova, “Issledovanie urovnei operatora Shredingera na granitse nepreryvnogo spektra”, Izv. IMI UdGU, 2006, no. 2(36), 91–94  mathnet
    4. N. I. Pletnikova, “Ob urovnyakh operatora Shredingera na granitse nepreryvnogo spektra”, Izv. IMI UdGU, 2005, no. 1(31), 107–112  mathnet
    5. N. I. Pletnikova, “Ob odnomernom uravnenii Shredingera s nelokalnym potentsialom tipa vozmuschennoi stupenki”, Izv. IMI UdGU, 2004, no. 1(29), 95–108  mathnet
    6. A. A. Arsen'ev, “Resonance Scattering by Infinite Sheets”, Theoret. and Math. Phys., 127:1 (2001), 424–434  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:465
    Full-text PDF :210
    References:70
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025