Abstract:
We evaluate the quantum defects for the continuous and discrete spectra of the radial Dirac operator with the potential V(r)=−A/r+q(r)V(r)=−A/r+q(r), where A>0A>0 and ∫∞0|q|\*(1+√r)dr<∞∫∞0|q|\*(1+√r)dr<∞.
Citation:
Kh. K. Ishkin, Kh. Kh. Murtazin, “Quantum defect for the Dirac operator with a nonanalytic potential”, TMF, 125:3 (2000), 444–452; Theoret. and Math. Phys., 125:3 (2000), 1678–1686
Kh. K. Ishkin, “On the Rayleigh–Schrödinger coefficients for the eigenvalues of regular perturbations of an anharmonic oscillator”, Theoret. and Math. Phys., 223:1 (2025), 650–664
Kh. K. Ishkin, “On analytic properties of Weyl function of Sturm–Liouville operator with a decaying complex potential”, Ufa Math. J., 5:1 (2013), 36–55