Abstract:
We find all self-adjoint Dirac Hamiltonians in Coulomb and Aharonov–Bohm potentials in 2+1 dimensions with the fermion spin taken into account. We obtain implicit equations for the spectra and construct eigenfunctions for all self-adjoint Dirac Hamiltonians in the indicated external fields. We find explicit solutions of the equations for the spectra in some cases.
Keywords:
symmetric operator, self-adjoint extension of the Hamiltonian, Coulomb potential in 2+1 dimensions, Aharonov–Bohm potential, spin.
Citation:
V. R. Khalilov, K. E. Lee, “Discrete spectra of the Dirac Hamiltonian in Coulomb and Aharonov–Bohm potentials in 2+1 dimensions”, TMF, 169:3 (2011), 368–390; Theoret. and Math. Phys., 169:3 (2011), 1683–1703
\Bibitem{KhaLee11}
\by V.~R.~Khalilov, K.~E.~Lee
\paper Discrete spectra of the~Dirac Hamiltonian in Coulomb and Aharonov--Bohm potentials in $2+1$ dimensions
\jour TMF
\yr 2011
\vol 169
\issue 3
\pages 368--390
\mathnet{http://mi.mathnet.ru/tmf6736}
\crossref{https://doi.org/10.4213/tmf6736}
\transl
\jour Theoret. and Math. Phys.
\yr 2011
\vol 169
\issue 3
\pages 1683--1703
\crossref{https://doi.org/10.1007/s11232-011-0145-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000300146300003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84862954598}
Linking options:
https://www.mathnet.ru/eng/tmf6736
https://doi.org/10.4213/tmf6736
https://www.mathnet.ru/eng/tmf/v169/i3/p368
This publication is cited in the following 7 articles:
Breev A.I., Ferreira R., Gitman D.M., Voronov B.L., “Spectra of Electronic Excitations in Graphene Near Coulomb Impurities”, J. Exp. Theor. Phys., 130:5 (2020), 711–736
Khalilov V.R., “Quantum States of a Neutral Massive Fermion With An Anomalous Magnetic Moment in An External Electric Field”, Mosc. Univ. Phys. Bull., 73:3 (2018), 293–300
Khalilov V.R., “Quasi-Stationary States and Fermion Pair Creation From a Vacuum in Supercritical Coulomb Field”, Mod. Phys. Lett. A, 32:38 (2017), 1750200
Kuleshov V.M., Mur V.D., Fedotov A.M., Lozovik Yu.E., “Coulomb Problem For Z > Z(Cr) in Doped Graphene”, J. Exp. Theor. Phys., 125:6 (2017), 1144–1162
Khalilov V.R., Mamsurov I.V., “Planar Density of Vacuum Charge Induced By a Supercritical Coulomb Potential”, Phys. Lett. B, 769 (2017), 152–158
Kuleshov V.M., Mur V.D., Narozhny N.B., “Coulomb Problem For Graphene With Supercritical Impurity”, V International Conference on Problems of Mathematical and Theoretical Physics and Mathematical Modelling, Journal of Physics Conference Series, 788, IOP Publishing Ltd, 2017, UNSP 012044
V. R. Khalilov, “Zero-mass fermions in Coulomb and Aharonov–Bohm potentials in 2+1 dimensions”, Theoret. and Math. Phys., 175:2 (2013), 637–654