Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2009, Volume 161, Number 3, Pages 332–345
DOI: https://doi.org/10.4213/tmf6445
(Mi tmf6445)
 

This article is cited in 6 scientific papers (total in 6 papers)

An integrable class of differential equations with nonlocal nonlinearity on Lie groups

M. M. Goncharovskiy, I. V. Shirokov

Omsk State University for Technology, Omsk, Russia
Full-text PDF (729 kB) Citations (6)
References:
Abstract: We construct the general and $N$-soliton solutions of an integro-differential Schrödinger equation with a nonlocal nonlinearity. We consider integrable nonlinear integro-differential equations on the manifold of an arbitrary connected unimodular Lie group. To reduce the equations on the group to equations with a smaller number of independent variables, we use the method of orbits in the coadjoint representation and the generalized harmonic analysis based on it. We demonstrate the capacities of the algorithm with the example of the $SO(3)$ group.
Keywords: nonlinear integro-differential equation, soliton, Lie group, coadjoint representation, harmonic analysis.
Received: 01.03.2009
English version:
Theoretical and Mathematical Physics, 2009, Volume 161, Issue 3, Pages 1604–1615
DOI: https://doi.org/10.1007/s11232-009-0149-5
Bibliographic databases:
Language: Russian
Citation: M. M. Goncharovskiy, I. V. Shirokov, “An integrable class of differential equations with nonlocal nonlinearity on Lie groups”, TMF, 161:3 (2009), 332–345; Theoret. and Math. Phys., 161:3 (2009), 1604–1615
Citation in format AMSBIB
\Bibitem{GonShi09}
\by M.~M.~Goncharovskiy, I.~V.~Shirokov
\paper An~integrable class of differential equations with nonlocal nonlinearity on~Lie groups
\jour TMF
\yr 2009
\vol 161
\issue 3
\pages 332--345
\mathnet{http://mi.mathnet.ru/tmf6445}
\crossref{https://doi.org/10.4213/tmf6445}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2642194}
\zmath{https://zbmath.org/?q=an:1186.35230}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009TMP...161.1604G}
\transl
\jour Theoret. and Math. Phys.
\yr 2009
\vol 161
\issue 3
\pages 1604--1615
\crossref{https://doi.org/10.1007/s11232-009-0149-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000273561600004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-76649111378}
Linking options:
  • https://www.mathnet.ru/eng/tmf6445
  • https://doi.org/10.4213/tmf6445
  • https://www.mathnet.ru/eng/tmf/v161/i3/p332
  • This publication is cited in the following 6 articles:
    1. A. I. Breev, A. V. Shapovalov, A. V. Kozlov, “Integrirovanie relyativistskikh volnovykh uravnenii v kosmologicheskoi modeli B'yanki IX”, Kompyuternye issledovaniya i modelirovanie, 8:3 (2016), 433–443  mathnet  crossref  elib
    2. A I Breev, A V Shapovalov, “The Dirac equation in an external electromagnetic field: symmetry algebra and exact integration”, J. Phys.: Conf. Ser., 670 (2016), 012015  crossref
    3. Alexey A. Magazev, Vitaly V. Mikheyev, Igor V. Shirokov, “Computation of Composition Functions and Invariant Vector Fields in Terms of Structure Constants of Associated Lie Algebras”, SIGMA, 11 (2015), 066, 17 pp.  mathnet  crossref
    4. Breev A.I., “Schrodinger Equation With Convolution Nonlinearity on Lie Groups and Commutative Homogeneous Spaces”, Russ. Phys. J., 57:8 (2014), 1050–1058  crossref  mathscinet  zmath  isi  scopus
    5. Breev A.I., Goncharovskii M.M., Shirokov I.V., “Klein-Gordon Equation with a Special Type of Nonlocal Nonlinearity in Commutative Homogeneous Spaces with Invariant Metric”, Russ. Phys. J., 56:7 (2013), 731–739  crossref  mathscinet  isi  scopus
    6. A. A. Magazev, “Integrating Klein–Gordon–Fock equations in an external electromagnetic field on Lie groups”, Theoret. and Math. Phys., 173:3 (2012), 1654–1667  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:750
    Full-text PDF :245
    References:112
    First page:30
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025