Abstract:
We construct the general and $N$-soliton solutions of an integro-differential Schrödinger equation with a nonlocal nonlinearity. We consider integrable nonlinear integro-differential equations on the manifold of
an arbitrary connected unimodular Lie group. To reduce the equations on the group to equations with a smaller number of independent variables, we use the method of orbits in the coadjoint representation and the generalized harmonic analysis based on it. We demonstrate the capacities of the algorithm with the example of the $SO(3)$ group.
Citation:
M. M. Goncharovskiy, I. V. Shirokov, “An integrable class of differential equations with nonlocal nonlinearity on Lie groups”, TMF, 161:3 (2009), 332–345; Theoret. and Math. Phys., 161:3 (2009), 1604–1615
\Bibitem{GonShi09}
\by M.~M.~Goncharovskiy, I.~V.~Shirokov
\paper An~integrable class of differential equations with nonlocal nonlinearity on~Lie groups
\jour TMF
\yr 2009
\vol 161
\issue 3
\pages 332--345
\mathnet{http://mi.mathnet.ru/tmf6445}
\crossref{https://doi.org/10.4213/tmf6445}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2642194}
\zmath{https://zbmath.org/?q=an:1186.35230}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009TMP...161.1604G}
\transl
\jour Theoret. and Math. Phys.
\yr 2009
\vol 161
\issue 3
\pages 1604--1615
\crossref{https://doi.org/10.1007/s11232-009-0149-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000273561600004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-76649111378}
Linking options:
https://www.mathnet.ru/eng/tmf6445
https://doi.org/10.4213/tmf6445
https://www.mathnet.ru/eng/tmf/v161/i3/p332
This publication is cited in the following 6 articles:
A. I. Breev, A. V. Shapovalov, A. V. Kozlov, “Integrirovanie relyativistskikh volnovykh uravnenii v kosmologicheskoi modeli B'yanki IX”, Kompyuternye issledovaniya i modelirovanie, 8:3 (2016), 433–443
A I Breev, A V Shapovalov, “The Dirac equation in an external electromagnetic field: symmetry algebra and exact integration”, J. Phys.: Conf. Ser., 670 (2016), 012015
Alexey A. Magazev, Vitaly V. Mikheyev, Igor V. Shirokov, “Computation of Composition Functions and Invariant Vector Fields in Terms of Structure Constants of Associated Lie Algebras”, SIGMA, 11 (2015), 066, 17 pp.
Breev A.I., “Schrodinger Equation With Convolution Nonlinearity on Lie Groups and Commutative Homogeneous Spaces”, Russ. Phys. J., 57:8 (2014), 1050–1058
Breev A.I., Goncharovskii M.M., Shirokov I.V., “Klein-Gordon Equation with a Special Type of Nonlocal Nonlinearity in Commutative Homogeneous Spaces with Invariant Metric”, Russ. Phys. J., 56:7 (2013), 731–739
A. A. Magazev, “Integrating Klein–Gordon–Fock equations in an external electromagnetic field on Lie groups”, Theoret. and Math. Phys., 173:3 (2012), 1654–1667