Processing math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2009, Volume 159, Number 3, Pages 438–447
DOI: https://doi.org/10.4213/tmf6363
(Mi tmf6363)
 

This article is cited in 3 scientific papers (total in 3 papers)

Multicomponent nonlinear schrödinger equations with constant boundary conditions

V. S. Gerdjikov, N. A. Kostov, T. I. Valchev

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences
Full-text PDF (424 kB) Citations (3)
References:
Abstract: We outline several specific issues concerning the theory of multicomponent nonlinear Schrödinger equations with constant boundary conditions. We first study the spectral properties of the Lax operator L, the structure of the phase space M, and the construction of the fundamental analytic solutions. We then consider the regularized Wronskian relations, which allow analyzing the map between the potential of L and the scattering data. The Hamiltonian formulation also requires a regularization procedure.
Keywords: multicomponent nonlinear Schrödinger equation, constant boundary condition, fundamental analytic solution.
English version:
Theoretical and Mathematical Physics, 2009, Volume 159, Issue 3, Pages 787–795
DOI: https://doi.org/10.1007/s11232-009-0067-6
Bibliographic databases:
Language: Russian
Citation: V. S. Gerdjikov, N. A. Kostov, T. I. Valchev, “Multicomponent nonlinear schrödinger equations with constant boundary conditions”, TMF, 159:3 (2009), 438–447; Theoret. and Math. Phys., 159:3 (2009), 787–795
Citation in format AMSBIB
\Bibitem{GerKosVal09}
\by V.~S.~Gerdjikov, N.~A.~Kostov, T.~I.~Valchev
\paper Multicomponent nonlinear schr\"odinger equations with constant
boundary conditions
\jour TMF
\yr 2009
\vol 159
\issue 3
\pages 438--447
\mathnet{http://mi.mathnet.ru/tmf6363}
\crossref{https://doi.org/10.4213/tmf6363}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2568562}
\zmath{https://zbmath.org/?q=an:1179.35308}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009TMP...159..787G}
\transl
\jour Theoret. and Math. Phys.
\yr 2009
\vol 159
\issue 3
\pages 787--795
\crossref{https://doi.org/10.1007/s11232-009-0067-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000269118800012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350012137}
Linking options:
  • https://www.mathnet.ru/eng/tmf6363
  • https://doi.org/10.4213/tmf6363
  • https://www.mathnet.ru/eng/tmf/v159/i3/p438
  • This publication is cited in the following 3 articles:
    1. R. K. Salimov, T. R. Salimov, E. G. Ekomasov, “On the nonlinear two- and three-dimensional Klein–Gordon equations allowing localized solutions with beatings of coupled oscillators”, JETP Letters, 119:10 (2024), 807–811  mathnet  crossref  crossref
    2. V. S. Gerdjikov, THE 5TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN INFORMATION SYSTEMS (CIIS 2022): Intelligent and Resilient Digital Innovations for Sustainable Living, 2968, THE 5TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN INFORMATION SYSTEMS (CIIS 2022): Intelligent and Resilient Digital Innovations for Sustainable Living, 2023, 020001  crossref
    3. O. O. Pokutnyi, “Boundary-Value Problems for the Evolutionary Schrödinger Equation. I”, J Math Sci, 249:4 (2020), 647  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:584
    Full-text PDF :263
    References:82
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025