Abstract:
For every finite-dimensional nilpotent complex Lie algebra or superalgebra n, we offer three algorithms for realizing it in terms of creation and annihilation operators. We use these algorithms to realize Lie algebras with a maximal subalgebra of finite codimension. For a simple finite-dimensional g whose maximal nilpotent subalgebra is n, this gives its realization in terms of first-order differential operators on the big open cell of the flag manifold corresponding to the negative roots of g. For several examples, we executed the algorithms using the MATHEMATICA-based package SUPERLie. These realizations form a preparatory step in an explicit construction and description of an interesting new class of simple Lie (super)algebras of polynomial growth, generalizations of the Lie algebra of matrices of complex size.
Citation:
Č. Burdík, P. Ya. Grozman, D. A. Leites, A. N. Sergeev, “Realization of Lie algebras and superalgebras in terms of creation and annihilation operators: I”, TMF, 124:2 (2000), 227–238; Theoret. and Math. Phys., 124:2 (2000), 1048–1058
\Bibitem{BurGroLei00}
\by {\v C}.~Burd{\'\i}k, P.~Ya.~Grozman, D.~A.~Leites, A.~N.~Sergeev
\paper Realization of Lie algebras and superalgebras in terms of creation and annihilation operators: I
\jour TMF
\yr 2000
\vol 124
\issue 2
\pages 227--238
\mathnet{http://mi.mathnet.ru/tmf635}
\crossref{https://doi.org/10.4213/tmf635}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1821113}
\zmath{https://zbmath.org/?q=an:1112.17301}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 124
\issue 2
\pages 1048--1058
\crossref{https://doi.org/10.1007/BF02551076}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000089809400003}
Linking options:
https://www.mathnet.ru/eng/tmf635
https://doi.org/10.4213/tmf635
https://www.mathnet.ru/eng/tmf/v124/i2/p227
This publication is cited in the following 8 articles:
Alexander Alexandrovich Reshetnyak, Pavel Yurievich Moshin, “Gauge-Invariant Lagrangian Formulations for Mixed-Symmetry Higher-Spin Bosonic Fields in AdS Spaces”, Universe, 9:12 (2023), 495
Č. Burdík, O. Navrátil, “Extremal vectors of the Verma modules of the Lie algebra B 2 in Poincaré-Birkhoff-Witt basis”, Phys. Part. Nuclei Lett., 11:7 (2014), 938
Burdik C., Navratil O., “Extremal Vectors for Verma-Type Representations of Su(2,2)”, Phys. Atom. Nuclei, 76:8 (2013), 977–982
Reshetnyak A., “General Lagrangian Formulation for Higher Spin Fields with Arbitrary Index Symmetry. 2. Fermionic Fields”, Nucl. Phys. B, 869:3 (2013), 523–597
Burdik C. Reshetnyak A., “On Representations of Higher Spin Symmetry Algebras for Mixed-Symmetry Hs Fields on AdS-Spaces. Lagrangian Formulation”, 7th International Conference on Quantum Theory and Symmetries (Qts7), Journal of Physics Conference Series, 343, IOP Publishing Ltd, 2012, 012102
I. M. Shchepochkina, “How to realize a Lie algebra by vector fields”, Theoret. and Math. Phys., 147:3 (2006), 821–838
Yolanda Lozano, Steven Duplij, Malte Henkel, Malte Henkel, Euro Spallucci, Steven Duplij, Malte Henkel, Kim Milton, Stephen Naculich, Howard Schnitzer, Daniela Bigatti, Masud Chaichian, Wenfeng Chen, Christian Grosche, Allen Parks, Allen Parks, Allen Parks, Steven Duplij, Włdysław Marcinek, Jian-zu Zhang, Steven Duplij, Steven Duplij, Avinash Khare, Masayuki Kawakita, Steven Duplij, Steven Duplij, Antoine Van Proeyen, Wagel Siegel, Steven Duplij, Ben Craps, Frederick Roose, Walter Troost, Antoine Van Proeyen, Bernard de Wit, Antoine Van Proeyen, Paulius Miškinis, Dharamvir Ahluwalia, Mariana Kirchbach, Luca Lusanna, Dimitry Leites, Concise Encyclopedia of Supersymmetry, 2004, 377
Palev, TD, “Jacobson generators, Fock representations and statistics of sl(n+1)”, Journal of Mathematical Physics, 43:7 (2002), 3850