Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2000, Volume 124, Number 2, Pages 227–238
DOI: https://doi.org/10.4213/tmf635
(Mi tmf635)
 

This article is cited in 8 scientific papers (total in 8 papers)

Realization of Lie algebras and superalgebras in terms of creation and annihilation operators: I

Č. Burdíka, P. Ya. Grozmanb, D. A. Leitesb, A. N. Sergeevc

a Czech Technical University
b Stockholm University
c Balakovo Institute of Technique, Technology and Control
Full-text PDF (265 kB) Citations (8)
References:
Abstract: For every finite-dimensional nilpotent complex Lie algebra or superalgebra n, we offer three algorithms for realizing it in terms of creation and annihilation operators. We use these algorithms to realize Lie algebras with a maximal subalgebra of finite codimension. For a simple finite-dimensional g whose maximal nilpotent subalgebra is n, this gives its realization in terms of first-order differential operators on the big open cell of the flag manifold corresponding to the negative roots of g. For several examples, we executed the algorithms using the MATHEMATICA-based package SUPERLie. These realizations form a preparatory step in an explicit construction and description of an interesting new class of simple Lie (super)algebras of polynomial growth, generalizations of the Lie algebra of matrices of complex size.
Received: 09.02.2000
English version:
Theoretical and Mathematical Physics, 2000, Volume 124, Issue 2, Pages 1048–1058
DOI: https://doi.org/10.1007/BF02551076
Bibliographic databases:
Language: Russian
Citation: Č. Burdík, P. Ya. Grozman, D. A. Leites, A. N. Sergeev, “Realization of Lie algebras and superalgebras in terms of creation and annihilation operators: I”, TMF, 124:2 (2000), 227–238; Theoret. and Math. Phys., 124:2 (2000), 1048–1058
Citation in format AMSBIB
\Bibitem{BurGroLei00}
\by {\v C}.~Burd{\'\i}k, P.~Ya.~Grozman, D.~A.~Leites, A.~N.~Sergeev
\paper Realization of Lie algebras and superalgebras in terms of creation and annihilation operators: I
\jour TMF
\yr 2000
\vol 124
\issue 2
\pages 227--238
\mathnet{http://mi.mathnet.ru/tmf635}
\crossref{https://doi.org/10.4213/tmf635}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1821113}
\zmath{https://zbmath.org/?q=an:1112.17301}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 124
\issue 2
\pages 1048--1058
\crossref{https://doi.org/10.1007/BF02551076}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000089809400003}
Linking options:
  • https://www.mathnet.ru/eng/tmf635
  • https://doi.org/10.4213/tmf635
  • https://www.mathnet.ru/eng/tmf/v124/i2/p227
  • This publication is cited in the following 8 articles:
    1. Alexander Alexandrovich Reshetnyak, Pavel Yurievich Moshin, “Gauge-Invariant Lagrangian Formulations for Mixed-Symmetry Higher-Spin Bosonic Fields in AdS Spaces”, Universe, 9:12 (2023), 495  crossref
    2. Č. Burdík, O. Navrátil, “Extremal vectors of the Verma modules of the Lie algebra B 2 in Poincaré-Birkhoff-Witt basis”, Phys. Part. Nuclei Lett., 11:7 (2014), 938  crossref
    3. Burdik C., Navratil O., “Extremal Vectors for Verma-Type Representations of Su(2,2)”, Phys. Atom. Nuclei, 76:8 (2013), 977–982  crossref  mathscinet  adsnasa  isi  elib  scopus  scopus
    4. Reshetnyak A., “General Lagrangian Formulation for Higher Spin Fields with Arbitrary Index Symmetry. 2. Fermionic Fields”, Nucl. Phys. B, 869:3 (2013), 523–597  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    5. Burdik C. Reshetnyak A., “On Representations of Higher Spin Symmetry Algebras for Mixed-Symmetry Hs Fields on AdS-Spaces. Lagrangian Formulation”, 7th International Conference on Quantum Theory and Symmetries (Qts7), Journal of Physics Conference Series, 343, IOP Publishing Ltd, 2012, 012102  crossref  isi  scopus  scopus
    6. I. M. Shchepochkina, “How to realize a Lie algebra by vector fields”, Theoret. and Math. Phys., 147:3 (2006), 821–838  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. Yolanda Lozano, Steven Duplij, Malte Henkel, Malte Henkel, Euro Spallucci, Steven Duplij, Malte Henkel, Kim Milton, Stephen Naculich, Howard Schnitzer, Daniela Bigatti, Masud Chaichian, Wenfeng Chen, Christian Grosche, Allen Parks, Allen Parks, Allen Parks, Steven Duplij, Włdysław Marcinek, Jian-zu Zhang, Steven Duplij, Steven Duplij, Avinash Khare, Masayuki Kawakita, Steven Duplij, Steven Duplij, Antoine Van Proeyen, Wagel Siegel, Steven Duplij, Ben Craps, Frederick Roose, Walter Troost, Antoine Van Proeyen, Bernard de Wit, Antoine Van Proeyen, Paulius Miškinis, Dharamvir Ahluwalia, Mariana Kirchbach, Luca Lusanna, Dimitry Leites, Concise Encyclopedia of Supersymmetry, 2004, 377  crossref
    8. Palev, TD, “Jacobson generators, Fock representations and statistics of sl(n+1)”, Journal of Mathematical Physics, 43:7 (2002), 3850  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:597
    Full-text PDF :279
    References:88
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025