Abstract:
We briefly review known results concerning the study of isospectral manifolds
using integrable systems. We then describe new results concerning
the topology of isospectral manifolds of zero-diagonal Jacobi matrices. This
topology is studied using the Volterra system.
Citation:
A. V. Penskoi, “Integrable systems and the topology of isospectral manifolds”, TMF, 155:1 (2008), 140–146; Theoret. and Math. Phys., 155:1 (2008), 627–632
\Bibitem{Pen08}
\by A.~V.~Penskoi
\paper Integrable systems and the topology of isospectral manifolds
\jour TMF
\yr 2008
\vol 155
\issue 1
\pages 140--146
\mathnet{http://mi.mathnet.ru/tmf6199}
\crossref{https://doi.org/10.4213/tmf6199}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2466486}
\zmath{https://zbmath.org/?q=an:1180.58018}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008TMP...155..627P}
\elib{https://elibrary.ru/item.asp?id=13590871}
\transl
\jour Theoret. and Math. Phys.
\yr 2008
\vol 155
\issue 1
\pages 627--632
\crossref{https://doi.org/10.1007/s11232-008-0052-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000255258900012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42449093364}
Linking options:
https://www.mathnet.ru/eng/tmf6199
https://doi.org/10.4213/tmf6199
https://www.mathnet.ru/eng/tmf/v155/i1/p140
This publication is cited in the following 2 articles:
V. V. Cherepanov, “Orbit spaces for torus actions on Hessenberg varieties”, Sb. Math., 212:12 (2021), 1765–1784
Sutter T., Chatterjee D., Ramponi F.A., Lygeros J., “Isospectral Flows on a Class of Finite-Dimensional Jacobi Matrices”, Syst. Control Lett., 62:5 (2013), 388–394