Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1990, Volume 83, Number 3, Pages 323–333 (Mi tmf5805)  

This article is cited in 10 scientific papers (total in 10 papers)

Numerical realization of the inverse scattering method

I. T. Habibullin, A. G. Shagalov
References:
Abstract: A method of solving the Cauchy problem for integrable equations that is specially suited to the application of numerical methods is proposed. The dynamics of singular solutions in a differential-difference analog of the nonlinear Schrödinger equation is investigated in detail.
Received: 03.05.1989
English version:
Theoretical and Mathematical Physics, 1990, Volume 83, Issue 3, Pages 565–573
DOI: https://doi.org/10.1007/BF01018024
Bibliographic databases:
Language: Russian
Citation: I. T. Habibullin, A. G. Shagalov, “Numerical realization of the inverse scattering method”, TMF, 83:3 (1990), 323–333; Theoret. and Math. Phys., 83:3 (1990), 565–573
Citation in format AMSBIB
\Bibitem{HabSha90}
\by I.~T.~Habibullin, A.~G.~Shagalov
\paper Numerical realization of~the inverse scattering method
\jour TMF
\yr 1990
\vol 83
\issue 3
\pages 323--333
\mathnet{http://mi.mathnet.ru/tmf5805}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1070690}
\zmath{https://zbmath.org/?q=an:0723.65104|0708.65112}
\transl
\jour Theoret. and Math. Phys.
\yr 1990
\vol 83
\issue 3
\pages 565--573
\crossref{https://doi.org/10.1007/BF01018024}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1990EX50100001}
Linking options:
  • https://www.mathnet.ru/eng/tmf5805
  • https://www.mathnet.ru/eng/tmf/v83/i3/p323
  • This publication is cited in the following 10 articles:
    1. V. M. Adukov, G. Mishuris, “Utilization of the ExactMPF package for solving a discrete analogue of the nonlinear Schrödinger equation by the inverse scattering transform method”, Proc. R. Soc. A., 479:2269 (2023)  crossref
    2. V. M. Adukov, “Normalization of Wiener–Hopf factorization for 2×2 matrix functions and its application”, Ufa Math. J., 14:4 (2022), 1–13  mathnet  crossref  mathscinet
    3. S. N. Kiyasov, “Approximate factorization for a class of second-order matrix functions”, Lobachevskii J Math, 38:6 (2017), 1131  crossref
    4. S. N. Kiyasov, “Priblizhennaya faktorizatsiya odnogo klassa matrits-funktsii vtorogo poryadka”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 158, no. 4, Izd-vo Kazanskogo un-ta, Kazan, 2016, 511–529  mathnet  elib
    5. Charles L Epstein, Jeremy Magland, “The hard pulse approximation for the AKNS (2 × 2)-system”, Inverse Problems, 25:10 (2009), 105006  crossref
    6. F. Musso, A. B. Shabat, “Elementary Darboux Transformations and Factorization”, Theoret. and Math. Phys., 144:1 (2005), 1004–1013  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. Michael Öster, Yuri B. Gaididei, Magnus Johansson, Peter L. Christiansen, “Nonlocal and nonlinear dispersion in a nonlinear Schrödinger-type equation: exotic solitons and short-wavelength instabilities”, Physica D: Nonlinear Phenomena, 198:1-2 (2004), 29  crossref
    8. A. G. SHAGALOV, “SYMPLECTIC NUMERICAL METHODS IN DYNAMICS OF NONLINEAR WAVES”, Int. J. Mod. Phys. C, 10:05 (1999), 967  crossref
    9. V. V. Konotop, “Lattice dark solitons in the linear potential”, Theoret. and Math. Phys., 99:3 (1994), 687–691  mathnet  crossref  mathscinet  zmath  isi
    10. B. I. Suleimanov, I. T. Habibullin, “Symmetries of Kadomtsev–Petviashvili equation, isomonodromic deformations, and nonlinear generalizations of the special functions of wave catastrophes”, Theoret. and Math. Phys., 97:2 (1993), 1250–1258  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:513
    Full-text PDF :182
    References:84
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025