Processing math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2004, Volume 139, Number 2, Pages 225–244
DOI: https://doi.org/10.4213/tmf58
(Mi tmf58)
 

This article is cited in 8 scientific papers (total in 8 papers)

Toda Chains in the Jacobi Method

A. V. Tsiganov

St. Petersburg State University, Faculty of Physics
Full-text PDF (289 kB) Citations (8)
References:
Abstract: We use the Jacobi method to construct various integrable systems, such as the Stдckel systems and Toda chains, related to various root systems. We find canonical transformations that relate integrals of motion for the generalized open Toda chains of types Bn, Cn, and Dn.
Keywords: integrable systems, Hamilton–Jacobi equation, separation of variables, Toda chains.
Received: 19.05.2003
English version:
Theoretical and Mathematical Physics, 2004, Volume 139, Issue 2, Pages 636–653
DOI: https://doi.org/10.1023/B:TAMP.0000026181.79622.af
Bibliographic databases:
Language: Russian
Citation: A. V. Tsiganov, “Toda Chains in the Jacobi Method”, TMF, 139:2 (2004), 225–244; Theoret. and Math. Phys., 139:2 (2004), 636–653
Citation in format AMSBIB
\Bibitem{Tsi04}
\by A.~V.~Tsiganov
\paper Toda Chains in the Jacobi Method
\jour TMF
\yr 2004
\vol 139
\issue 2
\pages 225--244
\mathnet{http://mi.mathnet.ru/tmf58}
\crossref{https://doi.org/10.4213/tmf58}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2084555}
\zmath{https://zbmath.org/?q=an:1178.37061}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2004TMP...139..636T}
\elib{https://elibrary.ru/item.asp?id=13456458}
\transl
\jour Theoret. and Math. Phys.
\yr 2004
\vol 139
\issue 2
\pages 636--653
\crossref{https://doi.org/10.1023/B:TAMP.0000026181.79622.af}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000222138000004}
Linking options:
  • https://www.mathnet.ru/eng/tmf58
  • https://doi.org/10.4213/tmf58
  • https://www.mathnet.ru/eng/tmf/v139/i2/p225
  • This publication is cited in the following 8 articles:
    1. A V Tsiganov, “Reducible Abelian varieties and Lax matrices for Euler's problem of two fixed centres”, Nonlinearity, 35:10 (2022), 5357  crossref
    2. Zhang H., “On Superintegrable Systems With a Position-Dependent Mass in Polar-Like Coordinates”, Chin. Phys. B, 29:10 (2020), 100201  crossref  isi
    3. Zhang H., Hao Q.-Y., “Eisenhart Lift For Euler'S Problem of Two Fixed Centers”, Appl. Math. Comput., 350 (2019), 305–312  crossref  mathscinet  isi  scopus
    4. A. V. Tsyganov, “Razdelenie peremennykh dlya odnogo obobscheniya sistemy Chaplygina na sfere”, Nelineinaya dinam., 11:1 (2015), 179–185  mathnet  elib
    5. Andrey V. Tsiganov, “Simultaneous Separation for the Neumann and Chaplygin Systems”, Regul. Chaotic Dyn., 20:1 (2015), 74–93  mathnet  crossref  mathscinet  zmath
    6. A. P. Sozonov, A. V. Tsiganov, “Bäcklund transformations relating different Hamilton–Jacobi equations”, Theoret. and Math. Phys., 183:3 (2015), 768–781  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    7. Tsiganov A., “Integrable Euler TOP and Nonholonomic Chaplygin Ball”, Journal of Geometric Mechanics, 3:3 (2011), 337–362  crossref  mathscinet  zmath  isi  scopus  scopus
    8. Tsiganov, AV, “On maximally superintegrable systems”, Regular & Chaotic Dynamics, 13:3 (2008), 178  mathnet  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025