Abstract:
A relativistic theory of gravitation is constructed uniquely on
the basis of the special principle of relativity and the principle
of geometrization, the gravitational field being regarded as a
physical field in the spirit of Faraday and Maxwell, possessing
energy, momentum, and spin 2 and 0. The source of the
gravitational field is the total conserved energy-momentum tensor
of the matter and the gravitational field in Minkowski space.
Conservation laws hold rigorously for the energy-momentum, and
angular momentum of the matter and the gravitational field. The
theory explains all the existing gravitational experiments. By
virtue of the geometrization principle, the Riemannian space has a
field origin in the theory, arising as an effective force space
through the action of the gravitational field on the matter. The
theory gives a prediction of exceptional power – the Universe is
not closed, merely “flat”. It follows from this that in the
Universe there must be “hidden mass” in some form of matter.
Citation:
A. A. Logunov, M. A. Mestvirishvili, “Relativistic theory of gravitation”, TMF, 61:3 (1984), 327–346; Theoret. and Math. Phys., 61:3 (1984), 1170–1183
This publication is cited in the following 34 articles:
M. A. Serdyukova, A. N. Serdyukov, “A massive gravitational field in flat spacetime. I. Gauge invariance and field equations”, PFMT, 2019, no. 2(39), 45–53
Alexander Zakharov, Predrag Jovanović, Dusko Borka, Vesna Borka Jovanović, V.A. Andrianov, V.A. Matveev, V.A. Rubakov, V.T. Kim, A.A. Andrianov, M.D. Fitkevich, “Trajectories of bright stars at the Galactic Center as a tool to evaluate a graviton mass”, EPJ Web Conf., 125 (2016), 01011
A.F. Zakharov, P. Jovanović, D. Borka, V. Borka Jovanović, “Constraining the range of Yukawa gravity interaction from S2 star orbits II: bounds on graviton mass”, J. Cosmol. Astropart. Phys., 2016:05 (2016), 045
Mariana Espinosa Aldama, “The gravity apple tree”, J. Phys.: Conf. Ser., 600 (2015), 012050
S. S. Gershtein, A. A. Logunov, M. A. Mestvirishvili, “General relativity and the schwarzschild singularity”, Phys. Part. Nuclei, 39:1 (2008), 1
S. S. Gershtein, A. A. Logunov, M. A. Mestvirishvili, “Gravitational field self-limitation and its role in the Universe”, Phys. Usp., 49:11 (2006), 1179–1195
S. S. Gershtein, A. A. Logunov, M. A. Mestvirishvili, “Repulsive Forces in the Field Theory of Gravity”, Theoret. and Math. Phys., 145:2 (2005), 1604–1618
S. S. Gershtein, A. A. Logunov, M. A. Mestvirishvili, N. P. Tkachenko, “Graviton mass, quintessence, and oscillatory character of Universe evolution”, Phys. Atom. Nuclei, 67:8 (2004), 1596
Vladimir V. Sokolov, “Linear and nonlinear gravidynamics: static field of a collapsar”, Astrophys Space Sci, 191:2 (1992), 231
A. V. Genk, “Nonstatic centrally symmetric vacuum solution in the relativistic theory of gravitation”, Theoret. and Math. Phys., 88:2 (1991), 866–875
A. V. Genk, “Impossibility of centrally symmetric shock waves in vacuum in the relativistic theory of gravitation”, Theoret. and Math. Phys., 79:3 (1989), 665–670
K. A. Bronnikov, G. N. Shikin, “Some exact solutions in the relativistic theory of gravitation”, Theoret. and Math. Phys., 76:2 (1988), 879–886
K. A. Sveshnikov, P. K. Silaev, “Some exact solutions for a scalar field in the relativistic theory of gravitation”, Theoret. and Math. Phys., 76:3 (1988), 1000–1002
A. A. Bakhan'kov, “Stability of the motion of rotating test bodies in the relativistic theory of gravitation”, Theoret. and Math. Phys., 77:2 (1988), 1202–1210
A. A. Logunov, Yu. M. Loskutov, M. A. Mestvirishvili, “The relativistic theory of gravitation and its consequences”, Phys. Usp., 31:7 (1988), 581–596
A.A. Vlasov, “The effective action, the function “distribution” of spacetime and the relativistic theory of gravity”, Physics Letters A, 129:8-9 (1988), 433
A. A. Logunov, “The relativistic theory of gravitation and new notions of space-time”, Theoret. and Math. Phys., 70:1 (1987), 1–10
A. A. Vlasov, A. A. Logunov, “Exterior axisymmetric solution for a rotating body in the relativistic theory of gravitation”, Theoret. and Math. Phys., 70:2 (1987), 118–125
A. A. Vlasov, A. A. Logunov, “Difference between gravitational collapse in the relativistic theory of gravitation and in the general theory of relativity”, Theoret. and Math. Phys., 71:3 (1987), 565–570
A. A. Vlasov, “Mass of Newtonian stars in the relativistic theory of gravitation and in general relativity”, Theoret. and Math. Phys., 73:1 (1987), 1124–1129