Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1984, Volume 61, Number 2, Pages 163–173 (Mi tmf5681)  

This article is cited in 34 scientific papers (total in 34 papers)

Structure of quantum L operators for the R matrix of the XXZ model

V. O. Tarasov
References:
Abstract: For the R matrices of the XXX and XXZ models, a study is made of the L operators, i.e., the monodromy matrices with vacuum and finite-dimensional single-particle subspace. All possible vacuum eigenvalues of the diagonal matrix elements are found for such monodromy matrices. In the case of the R matrix of the XXZ model, the ratio of the vacuum eigenvalues is shown to be ππ-periodic with respect to the spectral parameter. All monodromy matrices with one-dimensional single-particle subspace are found.
Received: 01.11.1983
English version:
Theoretical and Mathematical Physics, 1984, Volume 61, Issue 2, Pages 1065–1072
DOI: https://doi.org/10.1007/BF01029107
Bibliographic databases:
Language: Russian
Citation: V. O. Tarasov, “Structure of quantum L operators for the R matrix of the XXZ model”, TMF, 61:2 (1984), 163–173; Theoret. and Math. Phys., 61:2 (1984), 1065–1072
Citation in format AMSBIB
\Bibitem{Tar84}
\by V.~O.~Tarasov
\paper Structure of quantum L operators for the R matrix of the XXZ model
\jour TMF
\yr 1984
\vol 61
\issue 2
\pages 163--173
\mathnet{http://mi.mathnet.ru/tmf5681}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=778541}
\transl
\jour Theoret. and Math. Phys.
\yr 1984
\vol 61
\issue 2
\pages 1065--1072
\crossref{https://doi.org/10.1007/BF01029107}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1984AKD1300001}
Linking options:
  • https://www.mathnet.ru/eng/tmf5681
  • https://www.mathnet.ru/eng/tmf/v61/i2/p163
  • This publication is cited in the following 34 articles:
    1. Hao Chang, Jinxin Hu, Lewis Topley, “Modular representations of the Yangian Y2Y2Y2”, Journal of London Math Soc, 111:1 (2025)  crossref
    2. Slaven Kožić, “On the h-adic Quantum Vertex Algebras Associated with Hecke Symmetries”, Commun. Math. Phys., 397:2 (2023), 607  crossref
    3. Inna Mashanova-Golikova, “Simplicity of Spectra for Bethe Subalgebras in Y(gl2)”, Arnold Math J., 7:2 (2021), 313  crossref
    4. D. Karakhanyan, R. Kirschner, “Representations of orthogonal and symplectic Yangians”, Nuclear Physics B, 967 (2021), 115402  crossref
    5. Naihuan Jing, Ming Liu, Alexander Molev, “Representations of Quantum Affine Algebras in their R-Matrix Realization”, SIGMA, 16 (2020), 145, 25 pp.  mathnet  crossref
    6. Naihuan Jing, Fan Yang, Ming Liu, “Yangian doubles of classical types and their vertex representations”, Journal of Mathematical Physics, 61:5 (2020)  crossref
    7. Aleksei Ilin, Leonid Rybnikov, “Bethe Subalgebras in Yangians and the Wonderful Compactification”, Commun. Math. Phys., 372:1 (2019), 343  crossref
    8. Stukopin V., Xxv International Conference on Integrable Systems and Quantum Symmetries (Isqs-25), Journal of Physics Conference Series, 965, IOP Publishing Ltd, 2018  crossref  isi  scopus
    9. Aleksei Ilin, Leonid Rybnikov, “Degeneration of Bethe subalgebras in the Yangian of gln
      gl n”, Lett Math Phys, 2017  crossref
    10. Nicolas Guay, Vidas Regelskis, Curtis Wendlandt, “Twisted Yangians of small rank”, Journal of Mathematical Physics, 57:4 (2016)  crossref
    11. D Chicherin, S Derkachov, “The R-operator for a modular double”, J. Phys. A: Math. Theor., 47:11 (2014), 115203  crossref
    12. M. Wheeler, “Scalar Products in Generalized Models with SU(3)-Symmetry”, Commun. Math. Phys., 327:3 (2014), 737  crossref
    13. Sergey Khoroshkin, Maxim Nazarov, Alexander Shapiro, “Rational and polynomial representations of Yangians”, Journal of Algebra, 418 (2014), 265  crossref
    14. V. A. Stukopin, “Representations of the Yangian of a Lie superalgebra of type A(m,n)”, Izv. Math., 77:5 (2013), 1021–1043  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    15. Sachin Gautam, Valerio Toledano Laredo, “Yangians and quantum loop algebras”, Sel. Math. New Ser., 19:2 (2013), 271  crossref
    16. M. Wheeler, “Multiple integral formulae for the scalar product of on-shell and off-shell Bethe vectors in -invariant models”, Nuclear Physics B, 875:1 (2013), 186  crossref
    17. Chicherin D., Derkachov S., Karakhanyan D., Kirschner R., “Baxter operators for arbitrary spin II”, Nuclear Phys B, 854:2 (2012), 433–465  crossref  isi
    18. Khoroshkin S. Nazarov M., “Mickelsson Algebras and Representations of Yangians”, Trans. Am. Math. Soc., 364:3 (2012), 1293–1367  isi
    19. D. Chicherin, S. Derkachov, D. Karakhanyan, R. Kirschner, “Baxter operators for arbitrary spin”, Nuclear Physics B, 854:2 (2012), 393  crossref
    20. V. A. Stukopin, “O predstavleniyakh yangiana superalgebry Li sl(1,2)”, Vladikavk. matem. zhurn., 13:3 (2011), 53–63  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:447
    Full-text PDF :183
    References:65
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025