Abstract:
For the R matrices of the XXX and XXZ models, a study is made of
the L operators, i.e., the monodromy matrices with vacuum and
finite-dimensional single-particle subspace. All possible vacuum
eigenvalues of the diagonal matrix elements are found for such
monodromy matrices. In the case of the R matrix of the XXZ model,
the ratio of the vacuum eigenvalues is shown to be ππ-periodic
with respect to the spectral parameter. All monodromy matrices
with one-dimensional single-particle subspace are found.
Citation:
V. O. Tarasov, “Structure of quantum L operators for the R matrix of the XXZ model”, TMF, 61:2 (1984), 163–173; Theoret. and Math. Phys., 61:2 (1984), 1065–1072
\Bibitem{Tar84}
\by V.~O.~Tarasov
\paper Structure of quantum L operators for the R matrix of the XXZ model
\jour TMF
\yr 1984
\vol 61
\issue 2
\pages 163--173
\mathnet{http://mi.mathnet.ru/tmf5681}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=778541}
\transl
\jour Theoret. and Math. Phys.
\yr 1984
\vol 61
\issue 2
\pages 1065--1072
\crossref{https://doi.org/10.1007/BF01029107}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1984AKD1300001}
Linking options:
https://www.mathnet.ru/eng/tmf5681
https://www.mathnet.ru/eng/tmf/v61/i2/p163
This publication is cited in the following 34 articles:
Hao Chang, Jinxin Hu, Lewis Topley, “Modular representations of the Yangian Y2Y2Y2”, Journal of London Math Soc, 111:1 (2025)
Slaven Kožić, “On the h-adic Quantum Vertex Algebras Associated with Hecke Symmetries”, Commun. Math. Phys., 397:2 (2023), 607
Inna Mashanova-Golikova, “Simplicity of Spectra for Bethe Subalgebras in Y(gl2)”, Arnold Math J., 7:2 (2021), 313
D. Karakhanyan, R. Kirschner, “Representations of orthogonal and symplectic Yangians”, Nuclear Physics B, 967 (2021), 115402
Naihuan Jing, Ming Liu, Alexander Molev, “Representations of Quantum Affine Algebras in their R-Matrix Realization”, SIGMA, 16 (2020), 145, 25 pp.
Naihuan Jing, Fan Yang, Ming Liu, “Yangian doubles of classical types and their vertex representations”, Journal of Mathematical Physics, 61:5 (2020)
Aleksei Ilin, Leonid Rybnikov, “Bethe Subalgebras in Yangians and the Wonderful Compactification”, Commun. Math. Phys., 372:1 (2019), 343
Stukopin V., Xxv International Conference on Integrable Systems and Quantum Symmetries (Isqs-25), Journal of Physics Conference Series, 965, IOP Publishing Ltd, 2018
Aleksei Ilin, Leonid Rybnikov, “Degeneration of Bethe subalgebras in the Yangian of
gln gl
n”, Lett Math Phys, 2017
Nicolas Guay, Vidas Regelskis, Curtis Wendlandt, “Twisted Yangians of small rank”, Journal of Mathematical Physics, 57:4 (2016)
D Chicherin, S Derkachov, “The R-operator for a modular double”, J. Phys. A: Math. Theor., 47:11 (2014), 115203
M. Wheeler, “Scalar Products in Generalized Models with SU(3)-Symmetry”, Commun. Math. Phys., 327:3 (2014), 737
Sergey Khoroshkin, Maxim Nazarov, Alexander Shapiro, “Rational and polynomial representations of Yangians”, Journal of Algebra, 418 (2014), 265
V. A. Stukopin, “Representations of the Yangian of a Lie superalgebra of type A(m,n)”, Izv. Math., 77:5 (2013), 1021–1043
Sachin Gautam, Valerio Toledano Laredo, “Yangians and quantum loop algebras”, Sel. Math. New Ser., 19:2 (2013), 271
M. Wheeler, “Multiple integral formulae for the scalar product of on-shell and off-shell Bethe vectors in -invariant models”, Nuclear Physics B, 875:1 (2013), 186
Chicherin D., Derkachov S., Karakhanyan D., Kirschner R., “Baxter operators for arbitrary spin II”, Nuclear Phys B, 854:2 (2012), 433–465
Khoroshkin S. Nazarov M., “Mickelsson Algebras and Representations of Yangians”, Trans. Am. Math. Soc., 364:3 (2012), 1293–1367
D. Chicherin, S. Derkachov, D. Karakhanyan, R. Kirschner, “Baxter operators for arbitrary spin”, Nuclear Physics B, 854:2 (2012), 393
V. A. Stukopin, “O predstavleniyakh yangiana superalgebry Li sl(1,2)”, Vladikavk. matem. zhurn., 13:3 (2011), 53–63