Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1984, Volume 60, Number 2, Pages 270–279 (Mi tmf5283)  

This article is cited in 22 scientific papers (total in 22 papers)

Formulation of boundary conditions for the BBGKY hierarchy with allowance for local conservation laws

D. N. Zubarev, V. G. Morozov
References:
Abstract: A new boundary condition for the Bogolyubov (BBGKY) hierarchy that takes into account correlations associated with local conservation laws is formulated. The explicit form of the boundary conditions is found for all reduced distribution functions. It is shown that in the simplest approximation of “binary collisions” this boundary condition leads to a kinetic equation for the single-particle distribution function in the form of the modified Enskog equation.
Received: 04.05.1984
English version:
Theoretical and Mathematical Physics, 1984, Volume 60, Issue 2, Pages 814–820
DOI: https://doi.org/10.1007/BF01018982
Bibliographic databases:
Language: Russian
Citation: D. N. Zubarev, V. G. Morozov, “Formulation of boundary conditions for the BBGKY hierarchy with allowance for local conservation laws”, TMF, 60:2 (1984), 270–279; Theoret. and Math. Phys., 60:2 (1984), 814–820
Citation in format AMSBIB
\Bibitem{ZubMor84}
\by D.~N.~Zubarev, V.~G.~Morozov
\paper Formulation of boundary conditions for the BBGKY hierarchy with allowance for local conservation laws
\jour TMF
\yr 1984
\vol 60
\issue 2
\pages 270--279
\mathnet{http://mi.mathnet.ru/tmf5283}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=762268}
\transl
\jour Theoret. and Math. Phys.
\yr 1984
\vol 60
\issue 2
\pages 814--820
\crossref{https://doi.org/10.1007/BF01018982}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1984ACL9200010}
Linking options:
  • https://www.mathnet.ru/eng/tmf5283
  • https://www.mathnet.ru/eng/tmf/v60/i2/p270
  • This publication is cited in the following 22 articles:
    1. M. V. Tokarchuk, “Unification of kinetic and hydrodynamic approaches in the theory of dense gases and liquids far from equilibrium”, Math. Model. Comput., 10:2 (2023), 272  crossref
    2. I.R. Yukhnovskii, M.V. Tokarchuk, P.A. Hlushak, “Metod kolektivnikh zmіnnikh v teorіï nelіnіinikh fluktuatsіi z urakhuvannyam kіnetichnikh protsesіv”, Ukr. J. Phys., 67:8 (2022), 579  crossref
    3. M. V. Tokarchuk, “To the kinetic theory of dense gases and liquids. Calculation of quasi-equilibrium particle distribution functions by the method of collective variables”, Math. Model. Comput., 9:2 (2022), 440  crossref
    4. P. A. Glushak, B. B. Markiv, M. V. Tokarchuk, “Zubarev's nonequilibrium statistical operator method in the generalized statistics of multiparticle systems”, Theoret. and Math. Phys., 194:1 (2018), 57–73  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    5. Mykhailo Tokarchuk, Petro Hlushak, “Unification of Thermo Field Kinetic and Hydrodynamics Approaches in the Theory of Dense Quantum–Field Systems”, Particles, 2:1 (2018), 1  crossref
    6. Hlushak P., Tokarchuk M., “Chain of Kinetic Equations For the Distribution Functions of Particles in Simple Liquid Taking Into Account Nonlinear Hydrodynamic Fluctuations”, Physica A, 443 (2016), 231–245  crossref  isi
    7. Yukhnovskii I.R. Hlushak P.A. Tokarchuk M.V., “BBGKY chain of kinetic equations, non-equilibrium statistical operator method and collective variable method in the statistical theory of non-equilibrium liquids”, Condens. Matter Phys., 19:4 (2016), 43705  crossref  isi  elib  scopus
    8. A. S. Trushechkin, “Microscopic solutions of kinetic equations and the irreversibility problem”, Proc. Steklov Inst. Math., 285 (2014), 251–274  mathnet  crossref  crossref  isi  elib  elib
    9. B. Markiv, I. Omelyan, M. Tokarchuk, “Consistent Description of Kinetics and Hydrodynamics of Weakly Nonequilibrium Processes in Simple Liquids”, J Stat Phys, 155:5 (2014), 843  crossref
    10. Markiv B.B., Tokarchuk R.M., Kostrobij P.P., Tokarchuk M.V., “Nonequilibrium statistical operator method in Renyi statistics”, Physica A-Statistical Mechanics and Its Applications, 390:5 (2011), 785–791  crossref  isi
    11. V. G. Morozov, “Kinetics of dense matter: Correlations and memory”, Phys. Part. Nuclei, 39:7 (2008), 1007  crossref
    12. M. V. Tokarchuk, I. P. Omelyan, A. E. Kobryn, “Kinetic equation for liquids with a multistep potential of interaction: Calculation of transport coefficients”, Phys. Rev. E, 62:6 (2000), 8021  crossref
    13. A.E. Kobryn, V.G. Morozov, I.P. Omelyan, M.V. Tokarchuk, “Enskog-Landau kinetic equation. Calculation of the transport coefficients for charged hard spheres”, Physica A: Statistical Mechanics and its Applications, 230:1-2 (1996), 189  crossref
    14. A.E. Kobryn, I.P. Omelyan, M.V. Tokarchuk, “Normal solution to the Enskog-Landau kinetic equation: boundary conditions method”, Physics Letters A, 223:1-2 (1996), 37  crossref
    15. I.P. Omelyan, M.V. Tokarchuk, “Kinetic equation for liquids with a multistep potential of interaction. H-theorem”, Physica A: Statistical Mechanics and its Applications, 234:1-2 (1996), 89  crossref
    16. V.G. Morozov, G. Röpke, “Quantum kinetic equation for nonequilibrium dense systems”, Physica A: Statistical Mechanics and its Applications, 221:4 (1995), 511  crossref
    17. D. N. Zubarev, V. G. Morozov, I. P. Omelyan, M. V. Tokarchuk, “Unification of the kinetic and hydrodynamic approaches in the theory of dense gases and liquids”, Theoret. and Math. Phys., 96:3 (1993), 997–1012  mathnet  crossref  mathscinet  zmath  isi
    18. Yu. A. Tserkovnikov, “Kinetic equations in the method of two-time finite-temperature Green's functions. I. Renormalization of the collision integral”, Theoret. and Math. Phys., 96:3 (1993), 1013–1026  mathnet  crossref  mathscinet  isi
    19. M. V. Tokarchuk, “On the statistical theory of a nonequilibrium plasma in its electromagnetic self-field”, Theoret. and Math. Phys., 97:1 (1993), 1126–1136  mathnet  crossref  isi
    20. D. N. Zubarev, V. G. Morozov, I. P. Omelyan, M. V. Tokarchuk, “Kinetic equations for dense gases and liquids”, Theoret. and Math. Phys., 87:1 (1991), 412–424  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:441
    Full-text PDF :167
    References:86
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025