Loading [MathJax]/jax/output/CommonHTML/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1985, Volume 65, Number 3, Pages 400–414 (Mi tmf5147)  

This article is cited in 11 scientific papers (total in 11 papers)

Generator algebra of the asymptotic Poincaré group in the general theory of relativity

V. O. Soloviev
References:
Abstract: The Poisson brackets of the generators of the Hamiltonian formalism for general relativity are obtained with allowance for surface terms of arbitrary form. For Minkowski space there exists the asymptotic Poincaré group, which is the semidirect product of the Poincaré group and an infinite subgroup for which the algebra of generators with surface terms closes. A criterion invariant with respect to the choice of the coordinate system on the hypersurfaces is obtained for realization of the Poincaré group in asymptotically flat space-time. The “background” fiat metric on the hypersurfaces and Poincaré group that preserve it are determined nonuniquely; however, the numerical values of the generators do not depend on the freedom of this choice on solutions of the constraint equations. For an asymptotically Galilean metric, the widely used boundary conditions are determined more accurately. A prescription is given for application of the Arnowitt–Deser–Misner decomposition in the case of a slowly decreasing contribution from coordinate and time transformations.
Received: 06.12.1983
Revised: 08.01.1985
English version:
Theoretical and Mathematical Physics, 1985, Volume 65, Issue 3, Pages 1240–1249
DOI: https://doi.org/10.1007/BF01036133
Bibliographic databases:
Language: Russian
Citation: V. O. Soloviev, “Generator algebra of the asymptotic Poincaré group in the general theory of relativity”, TMF, 65:3 (1985), 400–414; Theoret. and Math. Phys., 65:3 (1985), 1240–1249
Citation in format AMSBIB
\Bibitem{Sol85}
\by V.~O.~Soloviev
\paper Generator algebra of the asymptotic Poincar\'e group in the general theory of relativity
\jour TMF
\yr 1985
\vol 65
\issue 3
\pages 400--414
\mathnet{http://mi.mathnet.ru/tmf5147}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=829905}
\zmath{https://zbmath.org/?q=an:0596.53062}
\transl
\jour Theoret. and Math. Phys.
\yr 1985
\vol 65
\issue 3
\pages 1240--1249
\crossref{https://doi.org/10.1007/BF01036133}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1985D277400008}
Linking options:
  • https://www.mathnet.ru/eng/tmf5147
  • https://www.mathnet.ru/eng/tmf/v65/i3/p400
  • This publication is cited in the following 11 articles:
    1. Alexander N. Petrov, “A point mass and continuous collapse to a point mass in general relativity”, Gen Relativ Gravit, 50:1 (2018)  crossref
    2. A. E. Pavlov, “Intrinsic time in Wheeler–DeWitt conformal superspace”, Gravit. Cosmol., 23:3 (2017), 208  crossref
    3. Lompay R.R. Petrov A.N., “Covariant Differential Identities and Conservation Laws in Metric-Torsion Theories of Gravitation. I. General Consideration”, J. Math. Phys., 54:6 (2013), 062504  crossref  isi
    4. Pitts, JB, “Null cones and Einstein's equations in Minkowski spacetime”, Foundations of Physics, 34:2 (2004), 211  crossref  isi
    5. L szl B Szabados, “On the roots of the Poincar structure of asymptotically flat spacetimes”, Class. Quantum Grav., 20:13 (2003), 2627  crossref
    6. Roberto De Pietri, Luca Lusanna, Luca Martucci, Stefano Russo, “Review: Dirac's Observables for the Rest-Frame Instant Form of Tetrad Gravity in a Completely Fixed 3-Orthogonal Gauge”, General Relativity and Gravitation, 34:6 (2002), 877  crossref
    7. Luca Lusanna, “REVIEW: The Rest-Frame Instant Form of Metric Gravity”, General Relativity and Gravitation, 33:9 (2001), 1579  crossref
    8. Soloviev, VO, “Black hole entropy from Poisson brackets: Demystification of some calculations”, Physical Review D, 6102:2 (2000), 027502
    9. Soloviev V.O., “Black hole entropy from Poisson brackets: Demystification of some calculations”, Physical Review D, 61:2 (2000), 027502  isi
    10. V. O. Soloviev, “Poisson algebra independent on boundary conditions in Ashtekar's formalism”, Theoret. and Math. Phys., 112:1 (1997), 906–921  mathnet  crossref  crossref  mathscinet  zmath  isi
    11. A Dimakis, F Muller-Hoissen, “Spinor fields and the positive energy theorem”, Class. Quantum Grav., 7:3 (1990), 283  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:415
    Full-text PDF :239
    References:63
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025