Abstract:
A scheme of resummation of singularities related to the Goldstone singularities is suggested for the series of 4−ε expansions of the Green functions of the n-component Φ4 theory below the critical temperature. Using this scheme it is proved (in the arbitrary order of the ε expansion) that the scaling functions in the neighbourhood of the critical point have the same asymptotics at small external field and momenta as those predicted by the “hydrodynamic approximation”.
Citation:
M. Yu. Nalimov, “Goldstone singularities in the 4−ε expansion of the Φ4 theory”, TMF, 80:2 (1989), 212–225; Theoret. and Math. Phys., 80:2 (1989), 819–828
\Bibitem{Nal89}
\by M.~Yu.~Nalimov
\paper Goldstone singularities in the $4-\varepsilon$ expansion of the $\Phi^4$ theory
\jour TMF
\yr 1989
\vol 80
\issue 2
\pages 212--225
\mathnet{http://mi.mathnet.ru/tmf5131}
\transl
\jour Theoret. and Math. Phys.
\yr 1989
\vol 80
\issue 2
\pages 819--828
\crossref{https://doi.org/10.1007/BF01016108}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1989CW43800004}
Linking options:
https://www.mathnet.ru/eng/tmf5131
https://www.mathnet.ru/eng/tmf/v80/i2/p212
This publication is cited in the following 4 articles:
M. Hnatič, G.A. Kalagov, M.Yu. Nalimov, “2D Bose condensation and Goldstone singularities”, Nuclear Physics B, 936 (2018), 206
Honkonen J. Komarova M.V. Nalimov M.Yu., “Bose–Einstein Condensation Beyond Perturbation Theory: Goldstone Singularities and Instanton Solution”, Eur. Phys. J. B, 87:3 (2014), 75
Volchenkov, D, “Renormalization group and instantons in stochastic nonlinear dynamics”, European Physical Journal-Special Topics, 170 (2009), 1
M. Yu. Nalimov, “The perturbation expansion and goldstone singularities in the ordered phase of the On-symmetrical Φ4-theory in half space”, Theoret. and Math. Phys., 102:2 (1995), 163–172