Abstract:
The mean field limit is found for weak solutions of the Bogolyubov–Strel'tsova diffusion hierarchy that at the initial time are identical
to the Gibbs correlation functions. As a result, weak solutions of
the nonlinear diffusion equation are found over a finite time interval.
Citation:
V. I. Skripnik, “Mean field limit in a generalized Gibbs system and the equivalent nonequilibrium system of interacting Brownian particles”, TMF, 76:1 (1988), 100–117; Theoret. and Math. Phys., 76:1 (1988), 734–746
\Bibitem{Skr88}
\by V.~I.~Skripnik
\paper Mean field limit in a~generalized Gibbs system and the equivalent nonequilibrium system of interacting Brownian particles
\jour TMF
\yr 1988
\vol 76
\issue 1
\pages 100--117
\mathnet{http://mi.mathnet.ru/tmf5015}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=961953}
\transl
\jour Theoret. and Math. Phys.
\yr 1988
\vol 76
\issue 1
\pages 734--746
\crossref{https://doi.org/10.1007/BF01029432}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1988U173100009}
Linking options:
https://www.mathnet.ru/eng/tmf5015
https://www.mathnet.ru/eng/tmf/v76/i1/p100
This publication is cited in the following 1 articles:
V. I. Skripnik, “Evolution operator of the Bogolyubov gradient diffusion hierarchy in the mean field limit”, Theoret. and Math. Phys., 79:1 (1989), 431–436