Abstract:
It is shown that the distribution of the eigenvalues of the energy operator of a system of
N particles in a region A that interact by means of a two-body potential Λ satisfies
under certain conditions a Gaussian law in the limit Λ→∞, |Λ|−1N→δ and small δ.
Citation:
M. Sh. Goldstein, “Distribution of the eigenvalues of the energy operator of a continuous system in quantum statistical mechanics”, TMF, 63:1 (1985), 132–153; Theoret. and Math. Phys., 63:1 (1985), 412–426
\Bibitem{Gol85}
\by M.~Sh.~Goldstein
\paper Distribution of the eigenvalues of the energy operator of a~continuous system in quantum statistical mechanics
\jour TMF
\yr 1985
\vol 63
\issue 1
\pages 132--153
\mathnet{http://mi.mathnet.ru/tmf4751}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=794477}
\transl
\jour Theoret. and Math. Phys.
\yr 1985
\vol 63
\issue 1
\pages 412--426
\crossref{https://doi.org/10.1007/BF01017841}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1985ATJ6000010}
Linking options:
https://www.mathnet.ru/eng/tmf4751
https://www.mathnet.ru/eng/tmf/v63/i1/p132
This publication is cited in the following 2 articles:
A. M. Mathai, Serge B. Provost, “The Exact Density of the Eigenvalues of the Wishart and Matrix-Variate Gamma and Beta Random Variables”, Mathematics, 12:15 (2024), 2427
V K B Kota, K Kar, “Spectral distributions in nuclei: General principles and applications”, Pramana - J. Phys., 32:5 (1989), 647