Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1986, Volume 66, Number 1, Pages 109–120 (Mi tmf4598)  

This article is cited in 10 scientific papers (total in 10 papers)

Description of limit gibbs states for Curie–Weiss–Ising model

I. G. Brankov, V. A. Zagrebnov, N. S. Tonchev
References:
Abstract: Bogolyubov's method of quasiaverages is used to describe the limit equilibrium states of the ferromagnetic Curie–Weiss–Ising model in zero magnetic field. It is shown that they are translatioaally invariant and are linear convex combinations of two extreme points (pure phases).
Received: 14.01.1985
English version:
Theoretical and Mathematical Physics, 1986, Volume 66, Issue 1, Pages 72–80
DOI: https://doi.org/10.1007/BF01028941
Bibliographic databases:
Language: Russian
Citation: I. G. Brankov, V. A. Zagrebnov, N. S. Tonchev, “Description of limit gibbs states for Curie–Weiss–Ising model”, TMF, 66:1 (1986), 109–120; Theoret. and Math. Phys., 66:1 (1986), 72–80
Citation in format AMSBIB
\Bibitem{BraZagTon86}
\by I.~G.~Brankov, V.~A.~Zagrebnov, N.~S.~Tonchev
\paper Description of limit gibbs states for Curie--Weiss--Ising model
\jour TMF
\yr 1986
\vol 66
\issue 1
\pages 109--120
\mathnet{http://mi.mathnet.ru/tmf4598}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=831421}
\transl
\jour Theoret. and Math. Phys.
\yr 1986
\vol 66
\issue 1
\pages 72--80
\crossref{https://doi.org/10.1007/BF01028941}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1986D593000009}
Linking options:
  • https://www.mathnet.ru/eng/tmf4598
  • https://www.mathnet.ru/eng/tmf/v66/i1/p109
  • This publication is cited in the following 10 articles:
    1. Kalle Koskinen, “Infinite Volume Gibbs States and Metastates of the Random Field Mean-Field Spherical Model”, J Stat Phys, 190:3 (2023)  crossref
    2. W. F. Wreszinski, V. A. Zagrebnov, “Bogoliubov quasiaverages: Spontaneous symmetry breaking and the algebra of fluctuations”, Theoret. and Math. Phys., 194:2 (2018), 157–188  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    3. A. E. Patrick, “A Droplet Within the Spherical Model”, J Stat Phys, 142:5 (2011), 1085  crossref
    4. J. G. Brankov, N. S. Tonchev, “Finite-size scaling in the presence of an inhomogeneous external field: An analytical-model treatment”, Phys. Rev. B, 50:5 (1994), 2970  crossref
    5. A. Verbeure, V. A. Zagrebnov, “Gaussian, non-Gaussian critical fluctuations in the Curie-Weiss model”, J Stat Phys, 75:5-6 (1994), 1137  crossref
    6. A. E. Patrick, “On phase separation in the spherical model of a ferromagnet: Quasiaverage approach”, J Stat Phys, 72:3-4 (1993), 665  crossref
    7. A. Verbeure, V. A. Zagrebnov, “Phase transitions and algebra of fluctuation operators in an exactly soluble model of a quantum anharmonic crystal”, J Stat Phys, 69:1-2 (1992), 329  crossref
    8. J. M. G. Amaro de Matos, A. E. Patrick, V. A. Zagrebnov, “Random infinite-volume Gibbs states for the Curie-Weiss random field Ising model”, J Stat Phys, 66:1-2 (1992), 139  crossref
    9. J.G. Brankov, “Finite-size effects in the approximating Hamiltonian method”, Physica A: Statistical Mechanics and its Applications, 168:3 (1990), 1035  crossref
    10. N. M. Plakida, N. S. Tonchev, “Equation of state in an exactly solvable model of a structural phase transition”, Theoret. and Math. Phys., 72:2 (1987), 872–877  mathnet  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:629
    Full-text PDF :146
    References:85
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025