Abstract:
It is proved that the perturbation theory series in translation-invariant case and
with the removed cut-off of boson propagator for the euclidean Green functions; converges
if |g|2/¯mλ2/96¯Δ(0). Here ¯m is a certain quantity which remains finite when the
fermion propagator regularization is removed, λ2 is the boson mass and ¯Δ(0) is the value of the fermion propagator at the point x=0 of the x-space. By means of other methods the same problem was considered in the work [6] for the pseudo-euclidean and
in the work [5] for the euclidean Green functions.
Citation:
A. G. Basuev, “Convergence of the perturbation series for the Yukawa interaction”, TMF, 22:2 (1975), 203–212; Theoret. and Math. Phys., 22:2 (1975), 142–148
\Bibitem{Bas75}
\by A.~G.~Basuev
\paper Convergence of the perturbation series for the Yukawa interaction
\jour TMF
\yr 1975
\vol 22
\issue 2
\pages 203--212
\mathnet{http://mi.mathnet.ru/tmf3604}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=489487}
\transl
\jour Theoret. and Math. Phys.
\yr 1975
\vol 22
\issue 2
\pages 142--148
\crossref{https://doi.org/10.1007/BF01036318}
Linking options:
https://www.mathnet.ru/eng/tmf3604
https://www.mathnet.ru/eng/tmf/v22/i2/p203
This publication is cited in the following 6 articles:
Nikita A. Ignatyuk, Stanislav L. Ogarkov, Daniel V. Skliannyi, “Nonlocal Fractional Quantum Field Theory and Converging Perturbation Series”, Symmetry, 15:10 (2023), 1823
Guskov V.A. Ivanov M.G. Ogarkov S.L., “A Note on Efimov Nonlocal and Nonpolynomial Quantum Scalar Field Theory”, Phys. Part. Nuclei, 52:3 (2021), 420–437
Matthew Bernard, Vladislav A. Guskov, Mikhail G. Ivanov, Alexey E. Kalugin, Stanislav L. Ogarkov, “Nonlocal Scalar Quantum Field Theory—Functional Integration, Basis Functions Representation and Strong Coupling Expansion”, Particles, 2:3 (2019), 385
Ivan Chebotarev, Vladislav Guskov, Stanislav Ogarkov, Matthew Bernard, “S-Matrix of Nonlocal Scalar Quantum Field Theory in Basis Functions Representation”, Particles, 2:1 (2019), 103
V. A. Malyshev, “Cluster expansions in lattice models of statistical physics and the quantum theory of fields”, Russian Math. Surveys, 35:2 (1980), 1–62
V. A. Malyshev, “Probabilistic aspects of quantum field theory”, J. Soviet Math., 13:4 (1980), 479–505