Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1975, Volume 22, Number 2, Pages 203–212 (Mi tmf3604)  

This article is cited in 6 scientific papers (total in 6 papers)

Convergence of the perturbation series for the Yukawa interaction

A. G. Basuev
Full-text PDF (559 kB) Citations (6)
References:
Abstract: It is proved that the perturbation theory series in translation-invariant case and with the removed cut-off of boson propagator for the euclidean Green functions; converges if |g|2/m¯λ2/96Δ¯(0). Here m¯ is a certain quantity which remains finite when the fermion propagator regularization is removed, λ2 is the boson mass and Δ¯(0) is the value of the fermion propagator at the point x=0 of the x-space. By means of other methods the same problem was considered in the work [6] for the pseudo-euclidean and in the work [5] for the euclidean Green functions.
Received: 11.03.1974
English version:
Theoretical and Mathematical Physics, 1975, Volume 22, Issue 2, Pages 142–148
DOI: https://doi.org/10.1007/BF01036318
Bibliographic databases:
Language: Russian
Citation: A. G. Basuev, “Convergence of the perturbation series for the Yukawa interaction”, TMF, 22:2 (1975), 203–212; Theoret. and Math. Phys., 22:2 (1975), 142–148
Citation in format AMSBIB
\Bibitem{Bas75}
\by A.~G.~Basuev
\paper Convergence of the perturbation series for the Yukawa interaction
\jour TMF
\yr 1975
\vol 22
\issue 2
\pages 203--212
\mathnet{http://mi.mathnet.ru/tmf3604}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=489487}
\transl
\jour Theoret. and Math. Phys.
\yr 1975
\vol 22
\issue 2
\pages 142--148
\crossref{https://doi.org/10.1007/BF01036318}
Linking options:
  • https://www.mathnet.ru/eng/tmf3604
  • https://www.mathnet.ru/eng/tmf/v22/i2/p203
  • This publication is cited in the following 6 articles:
    1. Nikita A. Ignatyuk, Stanislav L. Ogarkov, Daniel V. Skliannyi, “Nonlocal Fractional Quantum Field Theory and Converging Perturbation Series”, Symmetry, 15:10 (2023), 1823  crossref
    2. Guskov V.A. Ivanov M.G. Ogarkov S.L., “A Note on Efimov Nonlocal and Nonpolynomial Quantum Scalar Field Theory”, Phys. Part. Nuclei, 52:3 (2021), 420–437  crossref  isi
    3. Matthew Bernard, Vladislav A. Guskov, Mikhail G. Ivanov, Alexey E. Kalugin, Stanislav L. Ogarkov, “Nonlocal Scalar Quantum Field Theory—Functional Integration, Basis Functions Representation and Strong Coupling Expansion”, Particles, 2:3 (2019), 385  crossref
    4. Ivan Chebotarev, Vladislav Guskov, Stanislav Ogarkov, Matthew Bernard, “S-Matrix of Nonlocal Scalar Quantum Field Theory in Basis Functions Representation”, Particles, 2:1 (2019), 103  crossref
    5. V. A. Malyshev, “Cluster expansions in lattice models of statistical physics and the quantum theory of fields”, Russian Math. Surveys, 35:2 (1980), 1–62  mathnet  crossref  mathscinet  adsnasa  isi
    6. V. A. Malyshev, “Probabilistic aspects of quantum field theory”, J. Soviet Math., 13:4 (1980), 479–505  mathnet  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:411
    Full-text PDF :132
    References:74
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025