Abstract:
Equations of evolution and resolvent type are constructed for the coefficient functions of the S-matrix and Greens's functions. The algebraic equivalence of the Sehwinger equations and the resolvent equations for the coefficient functions is proved.
Citation:
S. S. Ivanov, D. Ya. Petrina, A. L. Rebenko, “On equations for the coefficient functions of the S-matrix in quantum field theory”, TMF, 19:1 (1974), 37–46; Theoret. and Math. Phys., 19:1 (1974), 332–339
\Bibitem{IvaPetReb74}
\by S.~S.~Ivanov, D.~Ya.~Petrina, A.~L.~Rebenko
\paper On equations for the coefficient functions of the $S$-matrix in quantum field theory
\jour TMF
\yr 1974
\vol 19
\issue 1
\pages 37--46
\mathnet{http://mi.mathnet.ru/tmf3563}
\transl
\jour Theoret. and Math. Phys.
\yr 1974
\vol 19
\issue 1
\pages 332--339
\crossref{https://doi.org/10.1007/BF01037189}
Linking options:
https://www.mathnet.ru/eng/tmf3563
https://www.mathnet.ru/eng/tmf/v19/i1/p37
This publication is cited in the following 49 articles:
Yun-Zhi Gao, Shou-Fu Tian, “Poisson structure and action-angle variables for the higher-order Chen-Lee-Liu equation”, Z. Angew. Math. Phys., 76:3 (2025)
Jonatan Lenells, Ronald Quirchmayr, “On the spectral problem associated with the time-periodic nonlinear Schrödinger equation”, Math. Ann., 377:3-4 (2020), 1193
Yelda Aygar, Elgiz Bairamov, “Scattering Theory of Impulsive Sturm–Liouville Equation in Quantum Calculus”, Bull. Malays. Math. Sci. Soc., 42:6 (2019), 3247
A Maspero, “Tame majorant analyticity for the Birkhoff map of the defocusing nonlinear Schrödinger equation on the circle”, Nonlinearity, 31:5 (2018), 1981
James Colliander, Soonsik Kwon, Tadahiro Oh, “A remark on normal forms and the “upside-down” I-method for periodic NLS: Growth of higher Sobolev norms”, JAMA, 118:1 (2012), 55
Adrian Constantin, Rossen Ivanov, “Poisson Structure and Action-Angle Variables for the Camassa–Holm Equation”, Lett Math Phys, 76:1 (2006), 93
K. L. Vaninsky, “Symplectic Structures for the Cubic Schr�dinger Equation in the Periodic and Scattering Case”, Math Phys Anal Geom, 8:1 (2005), 1
Richard Beals, D. H. Sattinger, “Action-angle variables for the Gel'fand-Dikii flows”, Z. angew. Math. Phys., 43:2 (1992), 219
V S Gerdjikov, M I Ivanov, “Expansions over the 'squared' solutions and the inhomogeneous nonlinear Schrodinger equation”, Inverse Problems, 8:6 (1992), 831
Richard Beals, D. H. Sattinger, “On the complete integrability of completely integrable systems”, Commun.Math. Phys., 138:3 (1991), 409
Richard Beals, Boris Konopelchenko, “On nontrivial interactions and complete integrability of soliton equations”, Journal of Mathematical Physics, 32:10 (1991), 2695
V. D. Lipovskii, A. V. Shirokov, “2+1 Toda chain.
II. Hamiltonian formalism”, Theoret. and Math. Phys., 84:1 (1990), 718–728
B. G. Konopelchenko, Lecture Notes in Physics, 246, Field Theory, Quantum Gravity and Strings, 1988, 284
Mei-Mei Shen, D. R. Nicholson, “Stochasticity in numerical solutions of the nonlinear Schrödinger equation”, The Physics of Fluids, 30:10 (1987), 3150
B G Konopelchenko, V G Dubrovsky, “The hierarchy of the Poisson brackets between the elements of the scattering matrix for the general differential spectral problem”, Inverse Problems, 2:4 (1986), 433
I. M. Khamitov, “Local fields in the inverse scattering method”, Theoret. and Math. Phys., 62:3 (1985), 217–224
B. G. Konopelchenko, V. G. Dubrovsky, “Hierarchy of Poisson brackets for elements of a scattering matrix”, Letters in Mathematical Physics, 8:4 (1984), 273
J. B. McLeod, P. J. Olver, “The Connection between Partial Differential Equations Soluble by Inverse Scattering and Ordinary Differential Equations of Painlevé Type”, SIAM J. Math. Anal., 14:3 (1983), 488
N. Yu. Reshetikhin, L. D. Faddeev, “Hamiltonian structures for integrable models of field theory”, Theoret. and Math. Phys., 56:3 (1983), 847–862
E. D'Hoker, R. Jackiw, “Classical and quantal Liouville field theory”, Phys. Rev. D, 26:12 (1982), 3517