Abstract:
We consider the problem of finding hidden couplings and relationships not contained in the existing theory of angular momenta. For this purpose, we develop a general method for constructing generating invariants for all generalized Clebsch–Gordan coefficients that couple an arbitrary number of spinors. We obtain and analyze concrete expressions for such generating invariants. We find from this ways to obtain new relations and ways to generalize the theory of angular momenta. We discuss the possible applications of the method.
Citation:
V. P. Karassiov, L. A. Shelepin, “Hidden couplings and relationships in the theory of angular momenta”, TMF, 29:1 (1976), 71–81; Theoret. and Math. Phys., 29:1 (1976), 936–942
\Bibitem{KarShe76}
\by V.~P.~Karassiov, L.~A.~Shelepin
\paper Hidden couplings and relationships in the theory of angular momenta
\jour TMF
\yr 1976
\vol 29
\issue 1
\pages 71--81
\mathnet{http://mi.mathnet.ru/tmf3433}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=462260}
\transl
\jour Theoret. and Math. Phys.
\yr 1976
\vol 29
\issue 1
\pages 936--942
\crossref{https://doi.org/10.1007/BF01093467}
Linking options:
https://www.mathnet.ru/eng/tmf3433
https://www.mathnet.ru/eng/tmf/v29/i1/p71
This publication is cited in the following 2 articles:
V. P. Karassiov, P. P. Karasev, L. A. Shelepin, “Tensor properties of second-quantization operators and analysis of composite physical systems”, Theoret. and Math. Phys., 34:2 (1978), 116–124
V. P. Karassiov, L. A. Shelepin, “Construction of the Wigner–Racah algebra of the group $SU_3$”, Theoret. and Math. Phys., 36:2 (1978), 737–744