Abstract:
The asymptotic series for eigenvalues and bands for the Laplacian of the Dirichlet problem for three-dimensional layers coupled through small windows is constructed. We use the method of matching the asymptotic expansions of the solutions of boundary-value problems.
Citation:
I. Yu. Popov, “Asymptotic Series for the Spectrum of the Schrödinger Operator for Layers Coupled Through Small Windows”, TMF, 131:3 (2002), 407–418; Theoret. and Math. Phys., 131:3 (2002), 791–800
\Bibitem{Pop02}
\by I.~Yu.~Popov
\paper Asymptotic Series for the Spectrum of the Schr\"odinger Operator for Layers Coupled Through Small Windows
\jour TMF
\yr 2002
\vol 131
\issue 3
\pages 407--418
\mathnet{http://mi.mathnet.ru/tmf337}
\crossref{https://doi.org/10.4213/tmf337}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1931152}
\zmath{https://zbmath.org/?q=an:1038.81022}
\transl
\jour Theoret. and Math. Phys.
\yr 2002
\vol 131
\issue 3
\pages 791--800
\crossref{https://doi.org/10.1023/A:1015975423500}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000176741900004}
Linking options:
https://www.mathnet.ru/eng/tmf337
https://doi.org/10.4213/tmf337
https://www.mathnet.ru/eng/tmf/v131/i3/p407
This publication is cited in the following 4 articles: