Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2002, Volume 131, Number 2, Pages 304–331
DOI: https://doi.org/10.4213/tmf332
(Mi tmf332)
 

This article is cited in 5 scientific papers (total in 5 papers)

The Asymptotic Form of the Lower Landau Bands in a Strong Magnetic Field

J. Brüninga, S. Yu. Dobrokhotovb, K. V. Pankrashinba

a Humboldt University
b A. Ishlinsky Institite for Problems in Mechanics, Russian Academy of Sciences
References:
Abstract: The asymptotic form of the bottom part of the spectrum of the two-dimensional magnetic Schrödinger operator with a periodic potential in a strong magnetic field is studied in the semiclassical approximation. Averaging methods permit reducing the corresponding classical problem to a one-dimensional problem on the torus; we thus show the almost integrability of the original problem. Using elementary corollaries from the topological theory of Hamiltonian systems, we classify the almost invariant manifolds of the classical Hamiltonian. The manifolds corresponding to the bottom part of the spectrum are closed or nonclosed curves and points. Their geometric and topological characteristics determine the asymptotic form of parts of the spectrum (spectral series). We construct this asymptotic form using the methods of the semiclassical approximation with complex phases. We discuss the relation of the asymptotic form obtained to the magneto-Bloch conditions and asymptotics of the band spectrum.
Received: 14.01.2002
English version:
Theoretical and Mathematical Physics, 2002, Volume 131, Issue 2, Pages 704–728
DOI: https://doi.org/10.1023/A:1015433000783
Bibliographic databases:
Language: Russian
Citation: J. Brüning, S. Yu. Dobrokhotov, K. V. Pankrashin, “The Asymptotic Form of the Lower Landau Bands in a Strong Magnetic Field”, TMF, 131:2 (2002), 304–331; Theoret. and Math. Phys., 131:2 (2002), 704–728
Citation in format AMSBIB
\Bibitem{BruDobPan02}
\by J.~Br\"uning, S.~Yu.~Dobrokhotov, K.~V.~Pankrashin
\paper The Asymptotic Form of the Lower Landau Bands in a Strong Magnetic Field
\jour TMF
\yr 2002
\vol 131
\issue 2
\pages 304--331
\mathnet{http://mi.mathnet.ru/tmf332}
\crossref{https://doi.org/10.4213/tmf332}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1932256}
\zmath{https://zbmath.org/?q=an:1039.81023}
\transl
\jour Theoret. and Math. Phys.
\yr 2002
\vol 131
\issue 2
\pages 704--728
\crossref{https://doi.org/10.1023/A:1015433000783}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000176246100011}
Linking options:
  • https://www.mathnet.ru/eng/tmf332
  • https://doi.org/10.4213/tmf332
  • https://www.mathnet.ru/eng/tmf/v131/i2/p304
  • This publication is cited in the following 5 articles:
    1. Yu. A. Kordyukov, I. A. Taimanov, “Quasi-classical approximation for magnetic monopoles”, Russian Math. Surveys, 75:6 (2020), 1067–1088  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. A. Yu. Anikin, J. Brüning, S. Yu. Dobrokhotov, “Averaging and trajectories of a Hamiltonian system appearing in graphene placed in a strong magnetic field and a periodic potential”, J. Math. Sci., 223:6 (2017), 656–666  mathnet  crossref  mathscinet  elib
    3. Pankrashkin K, “On semiclassical dispersion relations of Harper-like operators”, Journal of Physics A-Mathematical and General, 37:48 (2004), 11681–11698  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    4. J. Brüning, S. Yu. Dobrokhotov, V. A. Geiler, K. Pankrashkin, “Hall conductivity of minibands lying at the wings of Landau levels”, JETP Letters, 77:11 (2003), 616–618  mathnet  crossref
    5. Bruning, J, “The spectral asymptotics of the two-dimensional Schrodinger operator with a strong magnetic field. II”, Russian Journal of Mathematical Physics, 9:4 (2002), 400  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:643
    Full-text PDF :253
    References:102
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025