Abstract:
We show that Toda lattices with the Cartan matrices An, Bn, Cn и Dn are Liouville-type systems. For these systems of equations, we obtain explicit formulas for the invariants and generalized Laplace invariants. We show how they can be used to construct conservation laws (x and y integrals) and higher symmetries.
Citation:
A. M. Gurieva, A. V. Zhiber, “Laplace Invariants of Two-Dimensional Open Toda Lattices”, TMF, 138:3 (2004), 401–421; Theoret. and Math. Phys., 138:3 (2004), 338–355
This publication is cited in the following 20 articles:
I. V. Rakhmelevich, “Ob invariantakh Laplasa dvumernykh nelineinykh uravnenii vtorogo poryadka s odnorodnym polinomom”, Izv. vuzov. Matem., 2024, no. 8, 55–64
I.T. Habibullin, A.U. Sakieva, “On integrable reductions of two-dimensional Toda-type lattices”, Partial Differential Equations in Applied Mathematics, 11 (2024), 100854
I. V. Rakhmelevich, “On Laplace Invariants of Two-Dimensional Nonlinear Equations of the Second Order with Homogeneous Polynomial”, Russ Math., 68:8 (2024), 47
S. Ya. Startsev, “Structure of set of symmetries for hyperbolic systems of Liouville type and generalized Laplace invariants”, Ufa Math. J., 10:4 (2018), 103–110
Athorne Ch., Yilmaz H., “Invariants of Hyperbolic Partial Differential Operators”, J. Phys. A-Math. Theor., 49:13 (2016), 135201
Demskoi D.K. Tran D.T., “Darboux integrability of determinant and equations for principal minors”, Nonlinearity, 29:7 (2016), 1973–1991
S. V. Smirnov, “Darboux integrability of discrete two-dimensional Toda lattices”, Theoret. and Math. Phys., 182:2 (2015), 189–210
Nie Zh., “On Characteristic Integrals of Toda Field Theories”, J. Nonlinear Math. Phys., 21:1 (2014), 120–131
Athorne Ch. Yilmaz H., “Laplace Invariants for General Hyperbolic Systems”, J. Nonlinear Math. Phys., 19:3 (2012), 1250024
Voronova Yu.G., “O zadache koshi dlya odnoi lineinoi giperbolicheskoi sistemy uravnenii”, Izvestiya Ufimskogo nauchnogo tsentra RAN, 2012, no. 2, 5–9
The cauchy problem for a linear hyperbolic system of equations
A. V. Kiselev, J. W. van de Leur, “Symmetry algebras of Lagrangian Liouville-type systems”, Theoret. and Math. Phys., 162:2 (2010), 149–162
D. K. Demskoi, “Integrals of open two-dimensional lattices”, Theoret. and Math. Phys., 163:1 (2010), 466–471
Yu. G. Voronova, “O zadache Koshi dlya lineinykh giperbolicheskikh sistem uravnenii s nulevymi obobschennymi invariantami Laplasa”, Ufimsk. matem. zhurn., 2:2 (2010), 20–26
V. L. Vereshchagin, “Discrete Toda lattices and the Laplace method”, Theoret. and Math. Phys., 160:3 (2009), 1229–1237
A. V. Zhiber, Yu. G. Mikhailova, “Algoritm postroeniya obschego resheniya n-komponentnoi giperbolicheskoi sistemy uravnenii s nulevymi invariantami Laplasa i kraevye zadachi”, Ufimsk. matem. zhurn., 1:3 (2009), 28–45
Demskoi, DK, “On non-Abelian Toda A(2)((1)) model and related hierarchies”, Journal of Mathematical Physics, 50:12 (2009), 123516
S. Ya. Startsev, “Cascade Method of Laplace Integration for Linear Hyperbolic Systems of Equations”, Math. Notes, 83:1 (2008), 97–106
V. L. Vereshchagin, “Darboux-integrable discrete systems”, Theoret. and Math. Phys., 156:2 (2008), 1142–1153
A. V. Zhiber, Yu. G. Mikhailova, “On hyperbolic systems of equations with zero generalized Laplace invariants”, Proc. Steklov Inst. Math. (Suppl.), 261, suppl. 1 (2008), S154–S164
S. Ya. Startsev, “On the variational integrating matrix for hyperbolic systems”, J. Math. Sci., 151:4 (2008), 3245–3253