Abstract:
The grand statistical ensemble of a random number of particles for which the dynamics of the $n$-particle states is described by the Kolmogorov–Feller equations is considered. A BBGKY hierarchy corresponding to these equations is constructed. In the limit of a weak interaction and a large average number of particles, it is established that there is a connection between the solutions of the limiting hierarchy of equations and the solutions of the Boltzmann equation.
Citation:
V. P. Belavkin, V. P. Maslov, S. È. Tariverdiev, “Asymptotic dynamics of a system of a large number of particles described by the Kolmogorov–Feller equations”, TMF, 49:3 (1981), 298–306; Theoret. and Math. Phys., 49 (1981), 1043–1049
\Bibitem{BelMasTar81}
\by V.~P.~Belavkin, V.~P.~Maslov, S.~\`E.~Tariverdiev
\paper Asymptotic dynamics of a~system of a~large number of particles described by the Kolmogorov--Feller equations
\jour TMF
\yr 1981
\vol 49
\issue 3
\pages 298--306
\mathnet{http://mi.mathnet.ru/tmf2455}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=648759}
\transl
\jour Theoret. and Math. Phys.
\yr 1981
\vol 49
\pages 1043--1049
\crossref{https://doi.org/10.1007/BF01042745}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981NW76000002}
Linking options:
https://www.mathnet.ru/eng/tmf2455
https://www.mathnet.ru/eng/tmf/v49/i3/p298
This publication is cited in the following 9 articles:
Seung-Yeal Ha, Jeongho Kim, Peter Kuchling, Oleksandr Kutoviy, “Infinite particle systems with collective behaviour and related mesoscopic equations”, Journal of Mathematical Physics, 60:12 (2019)
Christoph Berns, Yuri Kondratiev, Oleksandr Kutoviy, “Markov Jump Dynamics with Additive Intensities in Continuum: State Evolution and Mesoscopic Scaling”, J Stat Phys, 161:4 (2015), 876
Dmitri Finkelshtein, Yuri Kondratiev, Oleksandr Kutoviy, Eugene Lytvynov, “Binary jumps in continuum. II. Non-equilibrium process and a Vlasov-type scaling limit”, Journal of Mathematical Physics, 52:11 (2011)
Dmitri L. Finkelshtein, Yuri G. Kondratiev, Oleksandr V. Kutoviy, Eugene Lytvynov, “Binary jumps in continuum. I. Equilibrium processes and their scaling limits”, Journal of Mathematical Physics, 52:6 (2011)
Dmitri Finkelshtein, Yuri Kondratiev, Oleksandr Kutoviy, “Vlasov Scaling for Stochastic Dynamics of Continuous Systems”, J Stat Phys, 141:1 (2010), 158
V. P. Belavkin, V. N. Kolokol'tsov, “On a general kinetic equation for many–particle systems with interaction, fragmentation and coagulation”, Proc. R. Soc. Lond. A, 459:2031 (2003), 727
I. D. Chueshov, “Remark on the propagation-of-molecular-chaos theorem”, Theoret. and Math. Phys., 67:2 (1986), 517–521
D. Ya. Petrina, V. I. Gerasimenko, “A mathematical description of the evolution of the state of infinite systems of classical statistical mechanics”, Russian Math. Surveys, 38:5 (1983), 1–61
V. P. Maslov, S. È. Tariverdiev, “Asymptotics of the Kolmogorov–Feller equation for a system of a large number of particles”, J. Soviet Math., 23:5 (1983), 2553–2579