Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1981, Volume 49, Number 3, Pages 298–306 (Mi tmf2455)  

This article is cited in 9 scientific papers (total in 9 papers)

Asymptotic dynamics of a system of a large number of particles described by the Kolmogorov–Feller equations

V. P. Belavkin, V. P. Maslov, S. È. Tariverdiev
References:
Abstract: The grand statistical ensemble of a random number of particles for which the dynamics of the $n$-particle states is described by the Kolmogorov–Feller equations is considered. A BBGKY hierarchy corresponding to these equations is constructed. In the limit of a weak interaction and a large average number of particles, it is established that there is a connection between the solutions of the limiting hierarchy of equations and the solutions of the Boltzmann equation.
Received: 17.09.1980
English version:
Theoretical and Mathematical Physics, 1981, Volume 49, Pages 1043–1049
DOI: https://doi.org/10.1007/BF01042745
Bibliographic databases:
Language: Russian
Citation: V. P. Belavkin, V. P. Maslov, S. È. Tariverdiev, “Asymptotic dynamics of a system of a large number of particles described by the Kolmogorov–Feller equations”, TMF, 49:3 (1981), 298–306; Theoret. and Math. Phys., 49 (1981), 1043–1049
Citation in format AMSBIB
\Bibitem{BelMasTar81}
\by V.~P.~Belavkin, V.~P.~Maslov, S.~\`E.~Tariverdiev
\paper Asymptotic dynamics of a~system of a~large number of particles described by the Kolmogorov--Feller equations
\jour TMF
\yr 1981
\vol 49
\issue 3
\pages 298--306
\mathnet{http://mi.mathnet.ru/tmf2455}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=648759}
\transl
\jour Theoret. and Math. Phys.
\yr 1981
\vol 49
\pages 1043--1049
\crossref{https://doi.org/10.1007/BF01042745}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981NW76000002}
Linking options:
  • https://www.mathnet.ru/eng/tmf2455
  • https://www.mathnet.ru/eng/tmf/v49/i3/p298
  • This publication is cited in the following 9 articles:
    1. Seung-Yeal Ha, Jeongho Kim, Peter Kuchling, Oleksandr Kutoviy, “Infinite particle systems with collective behaviour and related mesoscopic equations”, Journal of Mathematical Physics, 60:12 (2019)  crossref
    2. Christoph Berns, Yuri Kondratiev, Oleksandr Kutoviy, “Markov Jump Dynamics with Additive Intensities in Continuum: State Evolution and Mesoscopic Scaling”, J Stat Phys, 161:4 (2015), 876  crossref
    3. Dmitri Finkelshtein, Yuri Kondratiev, Oleksandr Kutoviy, Eugene Lytvynov, “Binary jumps in continuum. II. Non-equilibrium process and a Vlasov-type scaling limit”, Journal of Mathematical Physics, 52:11 (2011)  crossref
    4. Dmitri L. Finkelshtein, Yuri G. Kondratiev, Oleksandr V. Kutoviy, Eugene Lytvynov, “Binary jumps in continuum. I. Equilibrium processes and their scaling limits”, Journal of Mathematical Physics, 52:6 (2011)  crossref
    5. Dmitri Finkelshtein, Yuri Kondratiev, Oleksandr Kutoviy, “Vlasov Scaling for Stochastic Dynamics of Continuous Systems”, J Stat Phys, 141:1 (2010), 158  crossref
    6. V. P. Belavkin, V. N. Kolokol'tsov, “On a general kinetic equation for many–particle systems with interaction, fragmentation and coagulation”, Proc. R. Soc. Lond. A, 459:2031 (2003), 727  crossref
    7. I. D. Chueshov, “Remark on the propagation-of-molecular-chaos theorem”, Theoret. and Math. Phys., 67:2 (1986), 517–521  mathnet  crossref  mathscinet  isi
    8. D. Ya. Petrina, V. I. Gerasimenko, “A mathematical description of the evolution of the state of infinite systems of classical statistical mechanics”, Russian Math. Surveys, 38:5 (1983), 1–61  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    9. V. P. Maslov, S. È. Tariverdiev, “Asymptotics of the Kolmogorov–Feller equation for a system of a large number of particles”, J. Soviet Math., 23:5 (1983), 2553–2579  mathnet  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:543
    Full-text PDF :153
    References:105
    First page:5
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025