Abstract:
Based on the analytic invariant charge obtained from the results of the standard perturbation theory up to the four-loop approximation, we construct a “synthetic” model of the invariant charge in quantum chromodynamics. In the suggested model, the perturbative discontinuity on the timelike semiaxis in the complex $Q^2$ plane is preserved, and nonperturbative contributions not only cancel nonphysical perturbation theory singularities in the infrared region but also rapidly decrease in the ultraviolet region. On one hand, the effective coupling function in this model is enhanced at zero (the dual superconductivity property of the quantum chromodynamics vacuum); on the other hand, a dynamical gluon mass appears. In our approach, fixing the parameter corresponding to the string tension parameter and normalizing (for example, at the point $M_\tau$) entirely fix the synthetic invariant-charge model. The dynamical gluon mass $m_{\mathrm{g}}$ is then fixed and is stable as the number of loops of the original perturbative approximation increases.
Keywords:
analytic approach, infrared region of quantum chromodynamics, running coupling constant, nonperturbative contributions.
Citation:
A. I. Alekseev, “Analytic Invariant Charge in QCD with Suppression of Nonperturbative Contributions at Large $Q^2$”, TMF, 145:2 (2005), 221–239; Theoret. and Math. Phys., 145:2 (2005), 1559–1575
\Bibitem{Ale05}
\by A.~I.~Alekseev
\paper Analytic Invariant Charge in QCD with Suppression of Nonperturbative Contributions at Large $Q^2$
\jour TMF
\yr 2005
\vol 145
\issue 2
\pages 221--239
\mathnet{http://mi.mathnet.ru/tmf1898}
\crossref{https://doi.org/10.4213/tmf1898}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2005TMP...145.1559A}
\elib{https://elibrary.ru/item.asp?id=17703459}
\transl
\jour Theoret. and Math. Phys.
\yr 2005
\vol 145
\issue 2
\pages 1559--1575
\crossref{https://doi.org/10.1007/s11232-005-0183-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000234123200008}
Linking options:
https://www.mathnet.ru/eng/tmf1898
https://doi.org/10.4213/tmf1898
https://www.mathnet.ru/eng/tmf/v145/i2/p221
This publication is cited in the following 12 articles:
Contreras C., Cvetic G., Orellana O., “Pqcd Running Couplings Finite and Monotonic in the Infrared: When Do They Reflect the Holomorphic Properties of Spacelike Observables?”, J. Phys. Commun., 5:1 (2021), 015019
Cvetic G., Koegerler R., “Lattice-Motivated Qcd Coupling and Hadronic Contribution to Muon G-2”, J. Phys. G-Nucl. Part. Phys., 48:5 (2021), 055008
Ayala C., Cvetic G., Koegerler R., Kondrashuk I., “Nearly Perturbative Lattice-Motivated QCD Coupling With Zero Ir Limit”, J. Phys. G-Nucl. Part. Phys., 45:3 (2018), 035001
Ayala C., Cvetic G., Koegerler R., “Lattice-Motivated Holomorphic Nearly Perturbative QCD”, J. Phys. G-Nucl. Part. Phys., 44:7 (2017), 075001
Deur A. Brodsky S.J. de Teramond G.F., “The QCD running coupling”, Prog. Part. Nucl. Phys., 90 (2016), 1–74