Abstract:
An explicit two-channel matrix representation is obtained for the Hamiltonians of systems with internal structure in the framework of the theory of extensions of symmetric operators. Generalized potentials that are equivalent to zero-range interactions with internal structure and automatically reproduce the boundary conditions that correspond to them as x→0 are constructed.
Citation:
A. K. Motovilov, “Algebraic version of extension theory for a quantum system with internal structure”, TMF, 97:2 (1993), 163–181; Theoret. and Math. Phys., 97:2 (1993), 1217–1228
\Bibitem{Mot93}
\by A.~K.~Motovilov
\paper Algebraic version of extension theory for a~quantum system with internal structure
\jour TMF
\yr 1993
\vol 97
\issue 2
\pages 163--181
\mathnet{http://mi.mathnet.ru/tmf1731}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1257864}
\zmath{https://zbmath.org/?q=an:0808.47054}
\transl
\jour Theoret. and Math. Phys.
\yr 1993
\vol 97
\issue 2
\pages 1217--1228
\crossref{https://doi.org/10.1007/BF01016867}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993NK68000001}
Linking options:
https://www.mathnet.ru/eng/tmf1731
https://www.mathnet.ru/eng/tmf/v97/i2/p163
This publication is cited in the following 2 articles:
K. A. Makarov, V. V. Melezhik, A. K. Motovilov, “The point interactions in the problem of three quantum particles with internal structure”, Theoret. and Math. Phys., 102:2 (1995), 188–207
A. K. Motovilov, “Removal of the dependence on energy from interactions depending on it as a resolvent”, Theoret. and Math. Phys., 104:2 (1995), 989–1007