Abstract:
A method of noncommutative integration of linear partial differential equations that is analogous to noncommutative integration of finite-dimensional Hamiltonian systems is proposed. The method is based on the concept, introduced in the paper, of a λ representation of Lie algebras. The method can be applied to the integration of the Klein–Gordon equation in Riemannian spaces of non-Stäckel type (i. e., in spaces that do not admit complete separation of the variables).
Citation:
A. V. Shapovalov, I. V. Shirokov, “Noncommutative integration of linear differential equations”, TMF, 104:2 (1995), 195–213; Theoret. and Math. Phys., 104:2 (1995), 921–934
This publication is cited in the following 51 articles:
A. A. Magazev, I. V. Shirokov, “On integrability of Klein-Gordon equations in electromagnetic fields invariant under subgroups of the Poincare group”, Russ Phys J, 2025
Eugene Oks, “Symmetry of the Non-Analytic Solution of the Dirac Equation Inside the Proton of Hydrogen Atoms”, Symmetry, 17:4 (2025), 517
Alexander I. Breev, Dmitry M. Gitman, Paulo A. Derolle, “Coherent states of an accelerated particle”, Eur. Phys. J. Plus, 139:10 (2024)
Alexander Shapovalov, Alexander Breev, “Harmonic Oscillator Coherent States from the Standpoint of Orbit Theory”, Symmetry, 15:2 (2023), 282
Obukhov V.V., “<P>Algebra of the Symmetry Operators of the Klein-Gordon-Fock Equation For the Case When Groups of Motions G(3) Act Transitively on Null Subsurfaces of Spacetime</P>”, Symmetry-Basel, 14:2 (2022), 346
Alexander Breev, Alexander Shapovalov, Dmitry Gitman, “Noncommutative Reduction of Nonlinear Schrödinger Equation on Lie Groups”, Universe, 8:9 (2022), 445
A. I. Breev, S. P. Gavrilov, D. M. Gitman, “Spinor Field Singular Functions in QED with Strong External Backgrounds”, J. Exp. Theor. Phys., 134:2 (2022), 157
Magazev A.A. Boldyreva M.N., “Schrodinger Equations in Electromagnetic Fields: Symmetries and Noncommutative Integration”, Symmetry-Basel, 13:8 (2021), 1527
Boldyreva M.N. Magazev A.A., “Exact Solutions of Klein-Gordon Equations in External Electromagnetic Fields on 3D de Sitter Background”, J. Math. Phys., 62:5 (2021), 053503
Obukhov V., “Separation of Variables in Hamilton-Jacobi and Klein-Gordon-Fock Equations For a Charged Test Particle in the Stackel Spaces of Type (1.1)”, Int. J. Geom. Methods Mod. Phys., 18:3 (2021), 2150036
M N Boldyreva, “Symmetry algebra of the time-dependent Schrödinger equation in constant and uniform fields”, J. Phys.: Conf. Ser., 1791:1 (2021), 012070
Ivanov D.A. Breev A.I., “Noncommutative Integration of the Klein-Gordon Equation in Electromagnetic Fields Admitting Functional Arbitrariness”, Russ. Phys. J., 62:12 (2020), 2169–2179
Obukhov V., “Separation of Variables in Hamilton-Jacobi Equation For a Charged Test Particle in the Stackel Spaces of Type (2.1)”, Int. J. Geom. Methods Mod. Phys., 17:14 (2020), 2050186
Breev A. Shapovalov A., “Non-Commutative Integration of the Dirac Equation in Homogeneous Spaces”, Symmetry-Basel, 12:11 (2020), 1867
Breev I A. Shapovalov V A., “Vacuum Quantum Effects on Lie Groups With Bi-Invariant Metrics”, Int. J. Geom. Methods Mod. Phys., 16:8 (2019), 1950122
Boldyreva M.N., Magazev A.A., “On the Lie Symmetry Algebras of the Stationary Schr?dinger and Pauli Equations”, Russ. Phys. J., 59:10 (2017), 1671–1680
Breev A.I., Magazev A.A., “Integration of the Dirac Equation on Lie Groups in An External Electromagnetic Field Admitting a Noncommutative Symmetry Algebra”, Russ. Phys. J., 59:12 (2017), 2048–2058
A. I. Breev, A. V. Shapovalov, “Noncommutative Integrability of the Klein–Gordon and Dirac Equations in (2+1)-Dimensional Spacetime”, Russ Phys J, 59:11 (2017), 1956
Breev A.I., Kozlov A.V., “Vacuum Averages of the Energy-Momentum Tensor of a Scalar Field in Homogeneous Spaces With a Conformal Metric”, Russ. Phys. J., 58:9 (2016), 1248–1257