Abstract:
We investigate invariant submanifolds of the so-called Darboux–Kadomtsev–Petviashvili chain. We show that restricting the dynamics to a class of invariant submanifolds yields an extension of the discrete Kadomtsev–Petviashvili hierarchy and intersections of invariant submanifolds yield the Lax description of a wide class of differential-difference systems. We consider self-similar reductions. We show that self-similar substitutions result in purely discrete equations that depend on a finite set of parameters and in equations determining deformations w.r.t. these parameters. We present examples. In particular, we show that the well-known first discrete Painlevé equation corresponds to the Volterra chain hierarchy. We derive the equations naturally generalizing the first discrete Painlevé equation in the sense that all of them become the first Painlevé equation in the continuum limit.
Citation:
A. K. Svinin, “Invariant Submanifolds of the Darboux–Kadomtsev–Petviashvili Chain and an Extension of the Discrete Kadomtsev–Petviashvili Hierarchy”, TMF, 141:2 (2004), 243–266; Theoret. and Math. Phys., 141:2 (2004), 1542–1561
\Bibitem{Svi04}
\by A.~K.~Svinin
\paper Invariant Submanifolds of the Darboux--Kadomtsev--Petviashvili Chain and an~Extension of the Discrete Kadomtsev--Petviashvili Hierarchy
\jour TMF
\yr 2004
\vol 141
\issue 2
\pages 243--266
\mathnet{http://mi.mathnet.ru/tmf124}
\crossref{https://doi.org/10.4213/tmf124}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2120226}
\zmath{https://zbmath.org/?q=an:1178.37093}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2004TMP...141.1542S}
\transl
\jour Theoret. and Math. Phys.
\yr 2004
\vol 141
\issue 2
\pages 1542--1561
\crossref{https://doi.org/10.1023/B:TAMP.0000046562.61970.ef}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000225778500006}
Linking options:
https://www.mathnet.ru/eng/tmf124
https://doi.org/10.4213/tmf124
https://www.mathnet.ru/eng/tmf/v141/i2/p243
This publication is cited in the following 8 articles:
Xianguo Geng, Jiao Wei, “Three-sheeted Riemann surface and solutions of the Itoh–Narita–Bogoyavlensky lattice hierarchy”, Rev. Math. Phys., 34:04 (2022)
Wang D., Gao Y.-T., Ding C.-C., Zhang C.-Y., “Solitons and Periodic Waves For a Generalized (3+1)-Dimensional Kadomtsev-Petviashvili Equation in Fluid Dynamics and Plasma Physics”, Commun. Theor. Phys., 72:11 (2020), 115004
Svinin A.K., “On Some Classes of Discrete Polynomials and Ordinary Difference Equations”, J. Phys. A-Math. Theor., 47:15 (2014), 155201
Svinin A.K., “On some integrable lattice related by the Miura-type transformation to the Itoh-Narita-Bogoyavlenskii lattice”, J. Phys. A: Math. Theor., 44:46 (2011), 465210
Svinin A.K., “On some class of homogeneous polynomials and explicit form of integrable hierarchies of differential-difference equations”, J. Phys. A: Math. Theor., 44:16 (2011), 165206
Svinin, AK, “On some class of reductions for the Itoh-Narita-Bogoyavlenskii lattice”, Journal of Physics A-Mathematical and Theoretical, 42:45 (2009), 454021
Svinin, AK, “Reductions of integrable lattices”, Journal of Physics A-Mathematical and Theoretical, 41:31 (2008), 315205
Andrei K. Svinin, “Integrable Discrete Equations Derived by Similarity Reduction of the Extended Discrete KP Hierarchy”, SIGMA, 2 (2006), 005, 11 pp.