Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2004, Volume 141, Number 2, Pages 243–266
DOI: https://doi.org/10.4213/tmf124
(Mi tmf124)
 

This article is cited in 8 scientific papers (total in 8 papers)

Invariant Submanifolds of the Darboux–Kadomtsev–Petviashvili Chain and an Extension of the Discrete Kadomtsev–Petviashvili Hierarchy

A. K. Svinin

Institute of System Dynamics and Control Theory, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (315 kB) Citations (8)
References:
Abstract: We investigate invariant submanifolds of the so-called Darboux–Kadomtsev–Petviashvili chain. We show that restricting the dynamics to a class of invariant submanifolds yields an extension of the discrete Kadomtsev–Petviashvili hierarchy and intersections of invariant submanifolds yield the Lax description of a wide class of differential-difference systems. We consider self-similar reductions. We show that self-similar substitutions result in purely discrete equations that depend on a finite set of parameters and in equations determining deformations w.r.t. these parameters. We present examples. In particular, we show that the well-known first discrete Painlevé equation corresponds to the Volterra chain hierarchy. We derive the equations naturally generalizing the first discrete Painlevé equation in the sense that all of them become the first Painlevé equation in the continuum limit.
Keywords: discrete Kadomtsev–Petviashvili hierarchy, invariant submanifolds, Darboux map.
Received: 13.01.2004
Revised: 22.03.2004
English version:
Theoretical and Mathematical Physics, 2004, Volume 141, Issue 2, Pages 1542–1561
DOI: https://doi.org/10.1023/B:TAMP.0000046562.61970.ef
Bibliographic databases:
Language: Russian
Citation: A. K. Svinin, “Invariant Submanifolds of the Darboux–Kadomtsev–Petviashvili Chain and an Extension of the Discrete Kadomtsev–Petviashvili Hierarchy”, TMF, 141:2 (2004), 243–266; Theoret. and Math. Phys., 141:2 (2004), 1542–1561
Citation in format AMSBIB
\Bibitem{Svi04}
\by A.~K.~Svinin
\paper Invariant Submanifolds of the Darboux--Kadomtsev--Petviashvili Chain and an~Extension of the Discrete Kadomtsev--Petviashvili Hierarchy
\jour TMF
\yr 2004
\vol 141
\issue 2
\pages 243--266
\mathnet{http://mi.mathnet.ru/tmf124}
\crossref{https://doi.org/10.4213/tmf124}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2120226}
\zmath{https://zbmath.org/?q=an:1178.37093}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2004TMP...141.1542S}
\transl
\jour Theoret. and Math. Phys.
\yr 2004
\vol 141
\issue 2
\pages 1542--1561
\crossref{https://doi.org/10.1023/B:TAMP.0000046562.61970.ef}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000225778500006}
Linking options:
  • https://www.mathnet.ru/eng/tmf124
  • https://doi.org/10.4213/tmf124
  • https://www.mathnet.ru/eng/tmf/v141/i2/p243
  • This publication is cited in the following 8 articles:
    1. Xianguo Geng, Jiao Wei, “Three-sheeted Riemann surface and solutions of the Itoh–Narita–Bogoyavlensky lattice hierarchy”, Rev. Math. Phys., 34:04 (2022)  crossref
    2. Wang D., Gao Y.-T., Ding C.-C., Zhang C.-Y., “Solitons and Periodic Waves For a Generalized (3+1)-Dimensional Kadomtsev-Petviashvili Equation in Fluid Dynamics and Plasma Physics”, Commun. Theor. Phys., 72:11 (2020), 115004  crossref  mathscinet  isi
    3. Svinin A.K., “On Some Classes of Discrete Polynomials and Ordinary Difference Equations”, J. Phys. A-Math. Theor., 47:15 (2014), 155201  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    4. Svinin A.K., “On some integrable lattice related by the Miura-type transformation to the Itoh-Narita-Bogoyavlenskii lattice”, J. Phys. A: Math. Theor., 44:46 (2011), 465210  crossref  zmath  adsnasa  isi  scopus  scopus
    5. Svinin A.K., “On some class of homogeneous polynomials and explicit form of integrable hierarchies of differential-difference equations”, J. Phys. A: Math. Theor., 44:16 (2011), 165206  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    6. Svinin, AK, “On some class of reductions for the Itoh-Narita-Bogoyavlenskii lattice”, Journal of Physics A-Mathematical and Theoretical, 42:45 (2009), 454021  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    7. Svinin, AK, “Reductions of integrable lattices”, Journal of Physics A-Mathematical and Theoretical, 41:31 (2008), 315205  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    8. Andrei K. Svinin, “Integrable Discrete Equations Derived by Similarity Reduction of the Extended Discrete KP Hierarchy”, SIGMA, 2 (2006), 005, 11 pp.  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:497
    Full-text PDF :197
    References:92
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025