Abstract:
Cauchy problem for the 2+1-dimensional nonlinear Boiti–Leon–Pempinelli (BLP) equation in the framework of the Inverse Problem Method is considered. We derive evolution equations for the resolvent, Jost solutions and Spectral Data of the two-dimensional differential Klein–Gordon operator with variable coefficients that are generated by the considered BLP system of equations. Additional conditions on the Spectral Data that guarantee stability of the solutions of the Cauchy problem, are obtained. We present a recursion procedure for construction of polynomial integrals of motion and generating function of these integrals in terms of Spectral Data.
Citation:
A. K. Pogrebkov, T. I. Garagash, “On a solution of the Cauchy problem for the Boiti–Leon–Pempinelli equation”, TMF, 109:2 (1996), 163–174; Theoret. and Math. Phys., 109:2 (1996), 1369–1378
\Bibitem{PogGar96}
\by A.~K.~Pogrebkov, T.~I.~Garagash
\paper On a~solution of the Cauchy problem for the Boiti--Leon--Pempinelli equation
\jour TMF
\yr 1996
\vol 109
\issue 2
\pages 163--174
\mathnet{http://mi.mathnet.ru/tmf1219}
\crossref{https://doi.org/10.4213/tmf1219}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1472466}
\zmath{https://zbmath.org/?q=an:0941.35091}
\transl
\jour Theoret. and Math. Phys.
\yr 1996
\vol 109
\issue 2
\pages 1369--1378
\crossref{https://doi.org/10.1007/BF02072003}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996XM63500001}
Linking options:
https://www.mathnet.ru/eng/tmf1219
https://doi.org/10.4213/tmf1219
https://www.mathnet.ru/eng/tmf/v109/i2/p163
This publication is cited in the following 3 articles:
Diana S. Maltseva, Roman O. Popovych, “Point-symmetry pseudogroup, Lie reductions and exact solutions of Boiti–Leon–Pempinelli system”, Physica D: Nonlinear Phenomena, 460 (2024), 134081
A. K. Pogrebkov, “Commutator identities on associative algebras and the integrability of
nonlinear evolution equations”, Theoret. and Math. Phys., 154:3 (2008), 405–417