Abstract:
Using the procedure for puncture fusion, we obtain new integrable systems with poles of orders higher than one in the Lax operator matrix and consider the Hamiltonians, symplectic structure, and symmetries of these systems. Using the Inozemtsev limit procedure, we find a Toda-like system in the elliptic case having nontrivial commutation relations between the phase-space variables.
Citation:
Yu. B. Chernyakov, “Integrable Systems Obtained by Puncture Fusion from Rational and Elliptic Gaudin Systems”, TMF, 141:1 (2004), 38–59; Theoret. and Math. Phys., 141:1 (2004), 1361–1380
\Bibitem{Che04}
\by Yu.~B.~Chernyakov
\paper Integrable Systems Obtained by Puncture Fusion from Rational and Elliptic Gaudin Systems
\jour TMF
\yr 2004
\vol 141
\issue 1
\pages 38--59
\mathnet{http://mi.mathnet.ru/tmf111}
\crossref{https://doi.org/10.4213/tmf111}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2124509}
\zmath{https://zbmath.org/?q=an:1178.37056}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2004TMP...141.1361C}
\transl
\jour Theoret. and Math. Phys.
\yr 2004
\vol 141
\issue 1
\pages 1361--1380
\crossref{https://doi.org/10.1023/B:TAMP.0000043854.15085.00}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000225149500003}
Linking options:
https://www.mathnet.ru/eng/tmf111
https://doi.org/10.4213/tmf111
https://www.mathnet.ru/eng/tmf/v141/i1/p38
This publication is cited in the following 5 articles:
Olivier Marchal, Mohamad Alameddine, “Isomonodromic and isospectral deformations of meromorphic connections: the sl 2 ( C ) case”, Nonlinearity, 37:11 (2024), 115006
Ilia Gaiur, Marta Mazzocco, Vladimir Rubtsov, “Isomonodromic Deformations: Confluence, Reduction and Quantisation”, Commun. Math. Phys., 400:2 (2023), 1385
Alexander Chervov, Gregorio Falqui, Leonid Rybnikov, “Limits of Gaudin Systems: Classical and Quantum Cases”, SIGMA, 5 (2009), 029, 17 pp.
Petrera, M, “An integrable discretization of the rational su(2) Gaudin model and related systems”, Communications in Mathematical Physics, 283:1 (2008), 227
Musso F, Petrera M, Ragnisco O, et al, “A rigid body dynamics derived from a class of extended Gaudin models: An integrable discretization”, Regular & Chaotic Dynamics, 10:4 (2005), 363–380